STAR 236-BBM

Bio-aggregates Based Building Materials

This publication has been published by Springer in March 2017, ISBN 978-94-024-1030-3

This STAR report is available at the following address:

http://www.springer.com/9789402410303

Please note that the following PDF file, offered by RILEM, is only a final draft approved by the Technical Committee members and the editors. No correction has been done to this final draft which is thus crossed out with the mention « Unedited version » as requested by Springer.
State-of-the-Art Report

Rilem TC 236 BBM

Bio based Building Materials

Edited by
Sofiane AMZIANE, chairman of Rilem TC 236 BBM
Florence COLLET, secretary of Rilem TC 236 BBM

Draft 23.08.2016
Foreword

Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. These materials are obtained from the processing of hemp, flax, miscanthus, pine, maize, sunflower, bamboo ...

The work of the Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. Are concerned building materials containing as main raw material renewable, recyclable and easily available plant particles. However, the work was relatively centred on hemp because hemp shiv is the bioaggregate that is the most widely used in building materials and the most studied in the literature.

This state-of-the-art report reflects the current knowledge on the assessment of the chemical, physical and mechanical properties of bioaggregate and vegetal concrete. It presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The first five chapters relate to the description of the vegetal aggregate. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed on chapters 7 to 9.

Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. Chapters 1 to 5 give an overview on the physical properties of the vegetal aggregate and the methods to assess these characteristics.

These geometrical characteristics result in noteworthy hygro-thermal performances. This is one of the essential characteristics, which differ of vegetal concrete compared to the tradition mineral-based concretes. Chapter 6 gives the state of the art of previous studies on hygric and thermal properties of bio-aggregate based building materials. Hygric characteristics such as sorption isotherms, water vapor permeability and moisture diffusivity are given. The ability of bio aggregate based building materials to moderate ambient relative humidity may be valued using moisture buffer value. Thermal properties (thermal conductivity, thermal diffusivity conductivity and specific heat capacity) are then reported. Finally, concluding remarks on hygrothermal behavior with simultaneous heat and mass transfer are provided.

Chapter 7 concerns behaviour of bio-aggregate based building materials exposed to fire. Discrepancies between fire reaction and fire resistance is highlighted in this chapter. Various results of fire reaction test performed on bio based materials are reported. Bioaggregates are often in Class F while concretes range in class
B1. In some of presented case studies, render and plaster play a key role in the fire resistance. EI 90 fire resistance appeared to be accessible with conventional technologies.

Chapter 8 deals with the impact of biological and environmental ageing on the durability of the multiphysical performances of vegetal concretes. It is important to note that in the case of hemp concretes, hygrothermal changes can also lead to specific disorders, such as variations of dimensional stability, of microstructure and of functional properties (mechanical, acoustical and hygrothermal properties). Moreover, the growth of microorganisms can also be observed and further aggravates the pathologies mentioned above. All these evolutions may as well lead to variations of the functional properties of the materials during their use.

Chapter 9 investigates the effect of production parameters including curing conditions (65% vs >95% RH), time of demoulding and specimen geometry (cylinder vs cube) on the concrete’s strength which relates to density and therefore to thermal and hygric properties. It studies hydration in the concrete’s microstructure and measures the compressive strength development at intervals between 1 day and 1 month.

Moulding time and curing conditions influence drying and therefore may impact binder hydration and consequently strength evolution. Specimen geometry may affect drying and can also determine how strain builds up in the concrete and thus when failure occurs.

The State-of-the-art report is followed by an appendix containing a TC report which presents the experience of a working group within the RILEM Technical Committee 236-BBM ‘Bio-aggregate-based building Materials’. The work of the group was dedicated to the study of construction materials made from plant particles. Are concerned building materials containing as main raw material renewable, recyclable and easily available plant particles. These materials are obtained from the processing of hemp, flax, miscanthus, pine, maize, sunflower, bamboo and others. However, the work of the Round Robin Test has been centred on hemp because hemp shiv is the bioaggregate that is the most widely used in building materials and the most studied in the literature.

The first round robin test of the TC-BBM was carried out to compare the protocols in use by the different laboratories (labs) to measure initial water content, bulk density, water absorption, particle grading and thermal conductivity. The aim is to define a characterisation protocol derived from those used by the different labs.

This first round robin test was carried out on one variety of hemp shiv. Nine laboratories from European universities and research centers were involved (Table 1).
The test results of 7 laboratories constitute a set of statistically representative data in order to propose recommendations to characterise hemp shiv after analysing the different methodologies in use in these labs.

Table 1. Participating Labs

<table>
<thead>
<tr>
<th>Letter</th>
<th>City</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bath (UK)</td>
<td>BRE Centre for Innovative Construction Materials / University of Bath</td>
</tr>
<tr>
<td>B</td>
<td>Clermont Ferrand (France)</td>
<td>Institut Pascal</td>
</tr>
<tr>
<td>C</td>
<td>Lorient (France)</td>
<td>LIMatB / Université de Bretagne Sud</td>
</tr>
<tr>
<td>D</td>
<td>Lyon (France)</td>
<td>DGCB / ENTPE</td>
</tr>
<tr>
<td>E</td>
<td>Paris (France)</td>
<td>IFSTTAR</td>
</tr>
<tr>
<td>F</td>
<td>Rennes (France)</td>
<td>LGCGM/Rennes 1</td>
</tr>
<tr>
<td>G</td>
<td>Toulouse (France)</td>
<td>LMDC / Université de Toulouse / UPS/INSA</td>
</tr>
<tr>
<td>I</td>
<td>Combloux (Belgium)</td>
<td>Combloux-Agro ressource – Université de Liège</td>
</tr>
</tbody>
</table>

Finally, this state-of-the-art on bio-based materials allow to show both advantages and limitations that can be expected plant-based building materials.

Ongoing research will certainly provide more insights that are not included in this book. But in terms of performance already demonstrated, we already have peace of mind about the potential for the benefit of biomaterials compared to conventional solutions that have a strong impact on our environmental.

Chair of 236 TC-BBM

Prof. Sofiane AMZIANE
TC 236 BBM Members

Chairman:
Sofiane AMZIANE, Institut Pascal, Clermont Université, France.

Secretary:
Florence COLLET, Université de Rennes 1, LGCGM, France.

TC Members:
Laurent ARNAUD, Ecole Nationale Supérieure d’Arts et Métiers, ENSAM Cluny, France.
Laëtitia BESSETTE, Centre Technique Louis VICAT, L’Isle d’Abeau, France.
Paulien DE BRUIJN, Lund University, Faculty of Engineering (LTH), Dept of Building Materials, Lund, Sweden.
Samuel DUBOIS, Université de Liège (Ulg), Gembloux, Agro-Bio Tech, Belgique.
Gilles ESCADEILLAS, Université de Toulouse, UPS, INSA, LMDC, France.
Harald GARRECHT, Universität Stuttgart, Institut für Werkstoffe im Bauwesen (IWB), Stuttgart, Deutschland.
Etienne GOURLAY, CETE de l’Est - Laboratoire Regional de Strasbourg, France.
André KLATT, Universität Stuttgart, Institut für Werkstoffe im Bauwesen (IWB), Stuttgart, Deutschland.
Christophe LANOS, Université de Rennes 1, LGCGM, France.
Mike LAWRENCE, University of Bath, BRE Centre for Innovative Construction Materials, UK.
Camille MAGNIONT, Université de Toulouse, UPS, INSA, LMDC, France.
Sandrine MARCEAU, Université Paris-Est, IFSTTAR, France.
Sara PAVIÁ, Department of Civil Engineering, Trinity College, Ireland.
Ulrike PETER, Lhoist, Lhoist Recherche et Développement S.A., Belgium.
Vincent PICANDET, IRDL, Université de Bretagne Sud, France.
Mohammed SONEBI, School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, UK.
Peter WALKER, University of Bath, BRE Centre for Innovative Construction Materials, UK.

Other contributors:
Thibaut COLINART, IRDL, Université de Bretagne Sud, France.
Guillaume DELANNOY, Université Paris-Est, IFSTTAR, France.
Yunhong JIANG, University of Bath, BRE Centre for Innovative Construction Materials, UK.
César NIYIGENA, Institut Pascal, Clermont Université, France.
Vincent NOZAHIC, Institut Pascal, Clermont Université, France.
Sylvie PRETOT, Université de Rennes 1, LGCGM, France.
Pierre TRONET, IRDL, Université de Bretagne Sud, France.
Table of Content

Chapter 1. Chemical composition of bioaggregates and their interactions with mineral binders ... 1

1.0 Introduction .. 1
1.1 Composition of hemp stem .. 1
1.2 Processing of hemp stem and microstructure of hemp shiv 2
1.3 Cell wall components .. 4
 1.3.1 Cellulose ... 4
 1.3.2 Hemicellulose ... 5
 1.3.3 Lignin ... 5
 1.3.4 Pectin ... 6
 1.3.5 Extractives .. 7
 1.3.6 Ash ... 7
 1.3.7 Water .. 8
1.4 Chemical composition of bioaggregates 8
 1.4.1 Chemical composition of bioaggregates measured by indirect methods 8
 1.4.2 Other methods to characterize biomass chemical composition ... 15
1.5 Surface characterization of bioaggregates – adhesion between lignocellulosic aggregates and a mineral binder 19
1.6 Chemical interactions between bioaggregates and mineral binders 21
 1.6.1 Short-term interactions between lignocellulosic particles and mineral binders .. 22
 1.6.2 Medium and long-term chemical interactions between plant particles and mineral binder ... 27
 1.6.3 Corrective treatments to enhance the compatibility between lignocellulosic materials and mineral binders 29
1.7 Conclusion ... 31
References .. 32

Chapter 2. Porosity, pore size distribution, micro-structure............... 41
Chapter 2. Techniques used to measure porosity

2.1 Imaging methods

2.2 Conclusion

Chapter 3. Water absorption of plant aggregate

3.1 Wetting of porous, heterogeneous surfaces

3.2 Transfer phenomena in a porous medium

3.3 Analogy with adhesion of mortars to a porous support

3.4 Overview of the processes of binder/wood adhesion

Chapter 4. Particle Size Distribution

4.1 General characteristics of shiv particles

4.2 Sieving methods

4.3 Image-processing methods

4.4 Image-analysis

References
4.4.2 Distributions

4.4.3 Comparison with the results obtained by sieving

4.5 Characterization of the PSD

4.5.1 Means and standard deviations

4.5.2 Distribution models

4.5.3 Fitting of the distribution laws

4.6 Conclusions

References

Chapter 5. Bulk density and compressibility

5.0 Introduction

5.1 Density and porosity, case of hemp shiv

5.2 Bulk compressibility

5.2.1 Low stress compression in a die

5.2.2 High stress compression in a die

5.2.3 Unconfined compression

5.3 Conclusions and perspectives

References

Chapter 6. Hygric and thermal properties of bio-aggregate based building materials

6.0 Introduction

6.1 Hygric properties

6.1.1 Moisture storage: sorption isotherm

6.1.2 Moisture transfer: water vapor permeability, capillarity, moisture diffusivity

6.1.3 Moisture buffering: moisture buffer value

6.2 Thermal properties

6.2.1 Thermal conductivity

6.2.2 Heat capacity and thermal diffusivity

6.3 Concluding remarks on hygrothermal behavior of bio-aggregate based building materials
Chapter 7. Bio-aggregate based building materials exposed to fire...... 165

7.1 Introduction ... 165
7.2 Fire reaction .. 167
 7.2.1 European class of fire reaction .. 167
 7.2.2 Tests methods ... 168
 7.2.3 Euroclass of bio-aggregate based building materials and products171
7.3 Fire resistance ... 172
 7.3.1 Fire resistance classes ... 172
 7.3.2 Examples of fire tests performed on bio-aggregate based products173
 7.3.3 Fire resistance of bio-aggregate based products 180
7.4 Real scale fire tests .. 180
7.5 Other quaint matter fire test ... 180

References.. 181

Chapter 8. Durability of bio-based concretes ... 183

8.0 Introduction .. 183
8.1 Accelerated aging protocols for bio-based construction materials 185
 8.1.1 Environmental aging ... 185
 8.1.2 Biological aging ... 185
8.2 Aging of bio-based concretes ... 188
 8.2.1 Natural aging of bio-based concretes .. 189
 8.2.2 Influence of environmental aging on the mechanical properties190
 8.2.3 Microbial aging ... 197
 8.2.4 Conclusion .. 199
8.3 Aging of natural fibres-cement composites ... 199
 8.3.1 Mineralisation of the vegetal fibres... 200
 8.3.2 Degradation mechanisms of vegetal fibres 201
8.4 Concluding remarks .. 201

References.. 202
3.3 Concluding remarks on initial water content .. 237

4 WATER ABSORPTION .. 238
4.1 Description of the experimental methods: .. 238
4.2 Results .. 239
4.3 Concluding remarks .. 242

SUMMARY OF FINDINGS ... 242

ROUND ROBIN TEST FOR HEMP SHIV CHARACTERISATION; 244

PART II : BULK DENSITY AND PARTICLE SIZE DISTRIBUTION 244

5 INTRODUCTION ... 245

6 MATERIAL .. 246
52% .. 247
18% .. 247

7 BULK DENSITY ... 247
7.1 Methods .. 247
7.2 Results .. 248
7.3 Concluding remarks on bulk density .. 250

8 PARTICLE SIZE DISTRIBUTION ... 252
8.1 Sieving method .. 252
8.1.1 Fibre content .. 254
Lab B ... 254
Lab C ... 254
Lab G ... 254
8.1.2 Dust content .. 254
8.2 Image processing ... 255
8.2.1 Picture acquisition ... 255
8.2.2 Image analysis .. 255
8.2.3 Measurements ... 255
8.2.4 Shape descriptors .. 256
8.2.5 Characterisation of size distributions 256
8.2.6 Comparison of image analysis methods 258
8.2.7 Comparison of collected results. 259
8.3 Comparison between sieving and image analysis results 263
8.4 Concluding remarks on Particle Size Distribution 264

SUMMARY OF FINDINGS ... 265
ACKNOWLEDGEMENTS .. 265
ROUND ROBIN TEST FOR HEMP SHIV CHARACTERISATION: 267
PART 3: THERMAL CONDUCTIVITY 267

9 INTRODUCTION .. 268

10 MATERIAL ... 269
 52% .. 270
 18% .. 270

11 THERMAL CONDUCTIVITY .. 270
 11.1 Experimental methods .. 270
 11.1.1 Guarded hot plate ... 270
 11.1.2 Hot wire ... 272
 11.2 Results ... 273
 11.2.1 Hot plate ... 273
 11.2.2 Hot wire ... 274
 11.2.3 Synthesis ... 276
 11.3 Concluding remarks .. 277

SUMMARY OF FINDINGS ... 278
ACKNOWLEDGEMENTS .. 279
List of Tables

Table 1.1 Chemical composition of various types of lignocellulosic biomass used as bioaggregates in building materials ... 11

Table 2.1 Characteristics of the X-ray CT and 2D scanning methods for lignocellulosic fibre size estimation. (Hamdi et al, 2015) .. 56

Table 2.2 Diffusion coefficients for hemp shiv sample .. 70

Table 2.3 Average cell wall densities and porosities of oven dry native spruce, maple and ash in dependence of sample dimension or geometry as well as displacement gas (helium and nitrogen) (Zauer, 2013) .. 72

Table 5.1 Densities and porosity of the hemp shiv under examination [NGU 09] ... 125

Table 5.2 Parameters of the compressibility model to the cases under investigation .. 126

Table 7.1 Main characteristics of fire reaction Euroclass for building products excluding floorings acc. to [EN 13501-1, 2007] .. 168

Table 7.2 Fire resistances classes and associated criteria acc. to [EN 13501-2, 2007] ... 173

Table 8.1 Different types of aging tests used for vegetal concretes 186

Table 8.2 Variation of the thermal conductivity of two hemp concretes before and after 75 days of wetting and drying cycles [Abdellaoui, 2014, Marceau et al., 2015] .. 192

Table 8.3 Influence of the material pH on fungal growth [Abdellaoui 2014] 199

Table 9.1 Summary of variables in concrete specimens tested. Four specimens of each binder (CL90; CEMII and NHL3.5) were fabricated with each of the 4 testing variables in the table. Hemp: binder: water = 1:2:3:1. All dried for 24 hours prior to testing. ... 210
List of Figures

Figure 1.1. Optical micrograph of a thin cross section of a hemp stem (x 90) [3] ..2
Figure 1.2. Schematic representation of hemp stem cross section 3
Figure 1.3. Structure of plant cell walls [5] ... 3
Figure 1.4. Cellulose structure [7] ... 4
Figure 1.5. Proposed model structure for soft wood lignin [7]............................... 6
Figure 1.6 Synthetic sketch of the two main analytical procedures to access the biomass composition adapted from [20] ... 9
Figure 1.7 Structural composition of bioaggregates (C: cellulose; H: Hemicellulose; L: Lignin) ... 13
Figure 1.8. Representative near infrared spectra of various biomass feedstocks [57] .. 17
Figure 1.9. Regression of NIRS predicted values for extractives, ash, lignin and arabinose on observed laboratory values [57] ... 18
Figure 1.10. Deconvolution computation of DTG curves from Origin software with X: Temperature(°C) and Y: DTG-d(m/m0)/dt (%/°C). Black = experimental DTG; Green = calculated peaks from the deconvolution computation with Origin software; Red = simulated DTG curve [20] ... 19
Figure 1.11. Macroscopic aspect of sunflower stem and three views (inside, epidermis and transversal slice) of raw aggregate [54] ... 20
Figure 1.12 ATR-FTIR analysis of sunflower particle inside and epidermis [54] 21
Figure 1.13 Photograph taken after 3 days of hydration of cement paste with two kinds of plant aggregate inclusion: one particle of shiv (arrow 1 and 2 indicate sampling points of FT-IR analysis) (a); pellet made of shiv powder (b) [30] 23
Figure 2.1 Methods used to determine porosity and pore size distribution (PSD) (L.M. Anovitz et al, 2015). ... 43
Figure 2.2 Comparison of the imaging analysis approaches in 2D and 3D analysis (Jerram et al, 2006). ... 45
Figure 2.3 Cross-section of hemp shiv x10 (author) ... 46
Figure 2.4 Cross-section of hemp shiv x40 (author) ... 47
Figure 2.5 Transverse section of hemp-lime in light polarised at 0º (left) and 90º (right) (author)...48

Figure 2.6 Micrographs of original sample of hemp hurds (a) and chemically modified by NaOH (b), EDTA (c) and Ca(OH)2 (d) (40x magnification) (Stevulova et al, 2014)...49

Figure 2.7 Hydrates in hemp lime concrete made with commercial binder (a) and increased quantity of hydrates in the binder of hemp concrete saturated with water for 2 weeks. (Walker et al, 2014)..51

Figure 2.8 Visualisation of the microstructure of low density (a & b), medium density (c & d) and high density (e & f) hemp shiv-magnesium oxide composites (Sassoni et al, 2014) ...52

Figure 2.9 Measuring 3D textures using XRCT techniques. X-rays are passed through the sample to produce a series of 2D images that are spaced close to each other (typically at resolutions of 7-30 µm). Sequential images are captured by rotating the sample or source. Using software such as Blob3D, the individual elements of the texture, such as crystals, can be sampled and quantified (Jerram et al, 2007). ..54

Figure 2.10(a) X-ray µ-tomography images of hemp fibre (MHFA) and shiv (MS22) modified mortars. Representative dimensions are 26 Å~ 22 Å~ 21mm³ and 37 Å~ 38 Å~ 22mm³ for MHFA and MS22, respectively. (b) In-depth views showing porosity and hemp phase arrangement. Crop volumes are 24 Å~ 21 Å~ 16 mm³ and 38 Å~ 38 Å~ 19 mm³ for MHFA and MS22, respectively. (Mostefai et al, 2015)..55

Figure 2.11 Image analysis to measure the porous area of the fibre cross-section using the software Leica QWin (Tran et al, 2015). ..57

Figure 2.12 T1 distribution for water-hemp mixtures after 18 h for different water to hemp mass ratios: (from bottom to top) 0.62, 0.86, 1.12, 1.37, 1.63, 1.89, 2.14, and 2.4 (Faure et al, 2012)..58

Figure 2.13 Pore size distribution of hemp-lime composites using MIP. Collet (2008) left; Boitryk (2014) Right ..60

Figure 2.14 The six main types of gas physisorption isotherms, according to the IUPAC classification (Sing, et al, 1985) ..63

Figure 2.15 Characteristic points on a Type II adsorption isotherm (Emmett, 1937) ..65
Figure 2.16 Typical DVS reference plot (up) and sorption isotherm (down) for hemp-lime (author) ..68

Figure 2.17 DVS plots for hemp shiv using cyclohexane. Reference plot (up) and sorption isotherm (down) (author) ..69

Figure 2.18 Diagram of a constant volume gas pycnometer. The sample-chamber and the tank, initially filled with gas at two different pressures, are connected by opening valve ‘z’. The final gas pressure indicated how much of the sample-chamber volume is occupied by the solid particles (Tamari, 2004)71

Figure 3.1 Diagrammatic representation of: a hydrophilic (a) and hydrophobic (b) smooth surface; a hydrophilic (c) and hydrophobic (d) rough surface; and a hydrophilic (e) and hydrophobic (f) porous surface (de Gennes et al., 200482

Figure 3.2 Illustration of the optimum initial rate of absorption (Groot & Larbi, 1999) ...87

Figure 3.3 Illustration of the interactions between a hydrated mineral binder and a particle of wood with which it is brought into contact after wetting88

Figure 3.4 Step-by-step method for measuring the absorption/adsorption of plant particles by immersion ..90

Figure 3.5 Contact angles formed by a drop of water on the epidermal internal faces of hemp and sunflower particles after 0, 30 and 60s (a). Observation of the characteristic spreading of the drop between 0 and 60 seconds on the epidermal face (b) and the internal face (c) of the sunflower92

Figure 3.6 Water adsorption/absorption curve by the immersion of chips (60x7x(1–3)mm3) of hemp and of sunflower as a function of the square root of elapsed time (a). Comparison between the gravimetric water adsorption/absorption and the tangential swelling during immersion (b) ..94

Figure 3.7 Water adsorption/absorption curves for immersion of hemp and sunflower granulates on a classic timescale (a) and on a logarithmic timescale (b) ...96

Figure 4.1 Pellets of fibres formed on the first sieves of the stack [PIC 13]102

Figure 4.2 Cumulative size distribution obtained by sieving [PIC 13]105

Figure 4.3 Sectional plan view of ASABE sieve analyser and picture of American Society of Agricultural and Biological Engineers (ASABE) sieve analyser [BIT 09b] ..106
Figure 4.4 a) Binarized image of singulated arrangement of hemp shiv particles over an A4 size area .. 109
Figure 4.5 Lengths and widths analysed [PIC 13] .. 110
Figure 4.6 Lengths and widths deduced from 2600 analysed hemp shiv particles ... 111
Figure 4.7 Lengths and widths deduced from 2600 analysed hemp shiv particles ... 114
Figure 4.8 Cross-section of the largest elliptical particle able to pass through the sieve, in the direction of its length and along the diagonal of the square hole 115
Figure 4.9 Comparison of the models adjusted to the cumulative distributions of width and length in area fraction and mass fraction .. 118
Figure 5.1 Change in the apparent density of loose dry hemp shiv as axial stress is applied in the cylinder [PIC 13] ... 125
Figure 5.2 The compression device, fitted with strain gauges [TRO 14a] 128
Figure 5.3 Geometry of the device and picture of the experimental setup [TRO 14a] .. 128
Figure 5.4 Stress balance on a virtual slice of compacted material in the die 130
Figure 5.5 Cooper and Eaton’s model versus experimental results with rearrangement and plasticity contributions to the compactness 132
Figure 5.6 Tested 320 mm high specimen made of hemp shiv only. The initial particle cohesion is obtained with a slight compaction in a 50 mm layers in a 160 mm inner diameter cylinder [CER 05] ... 133
Figure 5.7 Simple and cyclic compression tests on 320 mm high and 160 mm diameter specimens made of dry hemp particles without binder [CER 05] 134
Figure 6.1 Adsorption isotherms of materials (HLC: Hemp-Lime Concrete, AAC: Aerated Autoclaved Concrete, VPB: vertical perforated bricks) [Amziane and Arnaud, 2013] .. 140
Figure 6.2 Sorption isotherms of Hemp Concretes with increasing substitution of lime-based binder for calcium sulphate-based binder (F1: 1/3 sulphate-based binder + 2/3 lime-based binder; F2: 1/2 + 1/2; F3: 2/3 + 1/3) [Chamoin, 2013]. 140
Figure 6.3 Sorption-desorption isotherms of various mixtures obtained by substituting clay with wood aggregates [Bouguerra et al., 1999] 141
Figure 6.4 Variation of moisture permeability versus ambient relative humidity for several building material: sprayed and precast hemp concrete [Collet et al., 2013], clay brick and concrete brick [Kumaran et al., 2002].. 142

Figure 6.5 Variation of Isothermal moisture diffusion coefficient (vapor phase and liquid phase) with moisture content [de Vries, 1958]... 144

Figure 6.6 Moisture diffusivity of materials from capillary test - top: clay-cement matrix and clay-cement-30% of wood aggregates composite [Bouguerra et al., 1999]; bottom: cellular con-crete [Kumaran et al., 2002]................................. 145

Figure 6.7 Moisture diffusivity of hemp concrete with increasing substitution of lime-based binder for sulphate-based binder (F1: 1/3 sulphate-based binder + 2/3 lime-based binder; F2: 1/2 + 1/2; F3: 2/3 + 1/3) [Chamoin, 2013] 145

Figure 6.8 Review of Moisture buffer value of building materials: concrete and cellular concrete from [Rode, 2005], gypsum plaster, wood fibreboard and cellulose insulation from [Janssen and Roels, 2008], sprayed hemp concrete from [Collet and Pretot, 2012], Lime-hemp concrete from [Dubois et al., 2012], hemp lime concretes with increasing substitution of lime-based binder for sulphate-based binder (F1: 1/3 sulphate-based binder + 2/3 lime-based binder; F2: 1/2 + 1/2; F3: 2/3 + 1/3) [Collet and Pretot, 2012b] ... 147

Figure 6.9 Thermal conductivity of bio aggregate based building composites (made of wood or hemp shiv).. 149

Figure 6.10 Evolution of thermal conductivity of hemp concrete depending on density [Cerezo, 2005]... 150

Figure 6.11 Comparison of experimental data to self-consistent homogenization of thermal conductivity [Cerezo, 2005]... 150

Figure 6.13 Thermal conductivity according to the content of wood: confrontation of the experimental results to the results obtained by auto-coherent model [Bederina et al., 2007]. ... 154

Figure 6.14 Thermal conductivity of sprayed hemp concrete (wall formulation) versus density and wa-ter content [Collet and Pretot, 2014]................................. 156
Figure 6.15 Evolution of thermal capacity of Hemp Lime Material - wall in moist state [Evrard, 2008] ... 158

Figure 7.1 Example of FBI test realized on straw wall coated with earth rendering (illustration [cd2e]). ... 169

Figure 7.2 Example straw sample exposed to burner flame (illustration [cd2e])... 170

Figure 7.3 Image of the 2 hours fire resistance test performed on straw wall [Intertek, 2007a] ... 175

Figure 7.4 Temperature of thermocouples placed on cold face of straw wall during two hours fire resistance test [Intertek, 2007a] ... 175

Figure 7.5 Fire tests performed on roof and wall elements: “Maison de Montholier” (France) [CEBTP, 2004] ... 176

Figure 7.6 Temperatures of thermocouples placed at 10 cm of the cold face. “Maison de Montholier” (France) [CEBTP, 2004] ... 176

Figure 7.7 Facade element made with wood and straw, test performed by CSTB (France) [CSTB, 2009] ... 178

Figure 7.8 Wall realized with hemp concrete blocks. Fire test performed by CSTB (France) [CSTB, 2005] ... 179

Figure 7.9 Detail of a joint between blocks at 102 minutes. Fire test performed by CSTB (France) [CSTB, 2005] ... 179

Figure 8.1 Concepts of performance and service life [Talon, 2006] 184

Figure 8.2 Evolution of the compressive strength (a) for hemp concretes stored in controlled atmosphere and outdoor conditions [Magniont, 2010] and (b) for hemp concretes (LHC) and rice husk concretes (LRC) stored outdoor (OC: outdoor conditions) and in indoor standard conditions (ISC) [Chabannes et al. 2015] 189

Figure 8.3 Evolution of compressive strength of the pure binder paste and hemp concrete with time [Magniont et al., 2012] ... 190

Figure 8.4 SEM observations and CA EDS mapping of cross sections of hemp shiv extracted from a 2.5 years concrete [Magniont et al., 2012] 191

Figure 8.5 Variation of the density and of the compressive strength of hemp concretes [Hellebois et al., 2013] ... 192

Figure 8.6 Variation of weight and of compressive strength after 10 cycles of full immersion and drying [Sonebi et al., 2015] ... 193
Figure 8.7 Length variation of the samples during immersion and drying cycles [Castel et al., 2016]... 194

Figure 8.8 Average conditions of temperature, relative humidity and rainfall recorded in a whole year in the Mediterranean zone and corresponding test conditions of temperature and relative humidity [Arizzi et al., 2016]................. 195

Figure 8.9(a) Compressive strength of hemp concretes (LHC) and rice husk concretes (LRC) after accelerated carbonation curing (ACC) compared to natural conditions (ISC: indoor standard conditions, OC: outdoor conditions), (b) comparison of the cross sectional views of the samples after spraying with phenol-phthalein [Chabannes et al., 2015] ... 197

Figure 8.10 Presence of fungi after conservation of hemp concrete at 30°C and 98% RH [Hellebois et al., 2013].. 198

Figure 8.11 Typical load-deflection curves of kraft pulp fibre-cement composites exposed to wetting and drying cycles [Mohr et al., 2005]... 200

Figure 8.12 Initial structural fibre geometry and mineralized fibre inside the composite [Toledo Filho et al., 2009].. 200

Figure 8.13 Diagrammatic description of vegetal fibre’s alkaline degradation mechanism [Wei and Meyer, 2015]... 201

Figure 9.1 Strength development of the concretes over time. 211

Figure 9.2 SEM microstructure of the hydrated CL90: CEMII binder at 1 day showing significant, calcium silicate hydrate (CSH), ettringite and portlandite. ... 212

Figure 9.3 SEM microstructure of the hydrated CL90: CEMII binder at 1 month with abundant CSH, ettringite, cubic hydrates and carbonates. 212

Figure 9.4 NHL3.5 binder at 1 week showing scarce, large, needle-shaped hydrates and carbonates... 213

Figure 9.5 NHL3.5 binder at 1 month including significant hydrates and carbonates.. 213

Figure 9.6 Effect of testing variables on compressive strength of concretes after 10 weeks of curing. 1- Control specimens (100mm cubes, cured at 65% RH, straight out of mould); 2- cubes re-immersed; 3- cubes cured at >95% RH; 4- cylindrical concrete specimens; 5-cubes retained in moulds.. 214

Figure 9.7 Typical stress vs strain behaviour of hemp concrete varying with specimen geometry... 217
List of authors

Sofiane AMZIANE
Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr

Florence COLLET
Laboratoire de Génie Civil et Génie Mécanique de Rennes, Université de Rennes 1, France
florence.collet@univ-rennes1.fr

Guillaume DELANNOY
Université Paris-Est, IFSTTAR, MAST/CPDM, FR-77447 MARNE-LA-VALLEE
CEDEX 2, sandrine.marceau@ifsttar.fr

Gilles ESCADEILLAS
Laboratoire Matériaux et Durabilité des Constructions – Toulouse, France
INSA/UPS Dép. Génie Civil – Toulouse, France

Christophe LANOS
Laboratoire de Génie Civil et Génie Mécanique de Rennes, Université de Rennes 1, France
christophe.lanos@univ-rennes1.fr

Mike LAWRENCE
BRE Centre for Innovative Construction Materials, University of Bath BA2 7AY, United Kingdom - m.lawrence@bath.ac.uk

Camille MAGNIONT
Laboratoire Matériaux et Durabilité des Constructions – Toulouse, France
INSA/UPS Dép. Génie Civil – Toulouse, France - camille.magniont@univ-tlse3.fr

Sandrine MARCEAU
Université Paris-Est, IFSTTAR, MAST/CPDM, FR-77447 MARNE-LA-VALLEE
CEDEX 2, sandrine.marceau@ifsttar.fr

Vincent NOZAHIC
Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr

Sara PAVIA
Department of Civil Engineering, Museum Building. Trinity College. Dublin 2.
pavias@tcd.ie

Vincent PICANDET
IRDl – Université de Bretagne Sud – Centre de Recherche, rue de Saint-Maudé – 56100
Lorient, France – vincent.picandet@univ-ubs.fr

Mohammed SONEBI
School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, UK -
m.sonebi@qub.ac.uk
Chapter 1. Chemical composition of bioaggregates and their interactions with mineral binders

Camille Magniont and Gilles Escadeillas

Laboratoire Matériaux et Durabilité des Constructions – Toulouse, France
INSA/UPS Dép. Génie Civil – Toulouse, France

1.0 Introduction

The chemical composition of bioaggregates can strongly influence their properties (compressibility, durability, chemical and/or physical interactions with mineral species etc.) and consequently those of the composite containing them (setting time, hydration mechanisms, mechanical properties, durability, etc.). Nevertheless, few studies have explored the chemical composition of bioaggregates from the standpoint of bioaggregate-based building materials.

Parts 1 and 2 of this chapter briefly recall the composition and microstructure of hemp stem. These two parts mainly focus on hemp because hemp shiv is the bioaggregate that is the most widely used in building materials and the most studied in the literature. Part 3 aims to describe the chemical components of plant matter, and part 4 proposes a review of chemical composition analyses of different types of biomass that can be used as bioaggregates. These data come from articles from materials, agricultural, and biotechnology science, dealing with these plant particles as raw ingredients of building materials and also for paper and biodiesel production. These analyses consequently result from a large variety of laboratory analytical procedures. Other direct techniques can be used for chemical analyses and some are described here. Finally, parts 5 and 6 present respectively recent studies of surface characteristics of sunflower aggregates and the chemical interactions between plant matter and mineral binders.

1.1 Composition of hemp stem

From the centre to the outside of its cross section, hemp stem is composed of ([1], [2]):

- a hollow core,
the pith or medulla layer, composed of soft, spongy parenchyma cells with intercellular spaces,
the xylem layer, composed of thick woody tissues that support the plant and the vessels that ensure the transport of xylem sap (mainly water and minerals); this is the part that gives hemp shives,
the cambium layer, the growth area where cambial activity produces secondary xylem on the inside and secondary phloem (tissue that channels elaborated sap) on the outside. This layer also constitutes the zone where fibres and shives separate during the defibration process,
the phloem layer, which contains primary bast fibres (long fibres with low lignin content) and secondary fibres (generated from the cambium, they are shorter and have high lignin content). These fibres are encircled by cortical parenchyma cells,
the epidermis layer, which provides protection for plant cells and is a zone of exchanges with the surrounding environment.

The different parts of hemp stem have been identified on the optical micrograph obtained after staining with 'carmino vert' of Mirande by Vignon et al. [3] (Figure 1.1). Cellulose-rich tissues from epidermis, phloem and pith are coloured pink whereas the lignin-rich cells of xylem appear in green.

Figure 1.1. Optical micrograph of a thin cross section of a hemp stem (x 90) [3]

1.2 Processing of hemp stem and microstructure of hemp shiv

After harvesting, the typical industrial transformation process of hemp stem includes retting and mechanical defibration. Figure 1.2 is a schematic cross section of hemp stem.
Bast fibres are used as raw materials in the textile, insulation, paper and biopolymer industries.

Hurds or shives, the woody core particles, are used for animal bedding, garden mulch or lightweight aggregates in concrete.

In the next section, we focus on the chemical composition of these lignocellulosic aggregates that represent 60–80% of the total mass [4].

Lignocellulosic aggregates are mainly composed of xylem cells which are longitudinal, dead and empty of content. These tubes, serving for water transport, are responsible for the strongly anisotropic and porous microstructure of plant aggregates. Xylem cell walls themselves are complex composites; their structure is represented on Figure 1.3.
The middle lamella is mainly composed of pectin that ensures the bonding between the cells.

Primary and secondary walls are made of cellulose microfibrils, which are bundles of cellulose molecules, embedded in a matrix of hemicellulose and pectin. Inside the secondary wall, three sublayers can be distinguished by the different orientation of the cellulose microfibrils. The presence of lignin in these layers brings rigidity and water-impermeability to the cell.

The chemical nature of these different components is described in part 1.3.

1.3 Cell wall components

Lignocellulosic raw materials are mainly composed of three structural biopolymers: cellulose, hemicellulose and lignin. Other organic and inorganic substances, such as pectin, waxes, fats, water-soluble components and ash complete their chemical composition.

Holocellulose can be identified as the major constituent of plant aggregates; it is a result of the combination of cellulose and hemicellulose. Holocellulose is a polysaccharide made up of simple sugars. It is rich in hydroxyl groups that are responsible for moisture sorption through hydrogen bonding [6].

1.3.1 Cellulose

Cellulose is a hydrophilic glucan polymer consisting of a linear chain of 1,4-β anhydroglucose units, each containing three alcoholic hydroxyl groups (Figure 1.4) [7]. The number of glucose units in a cellulose molecule is referred to as the degree of polymerization (DP) and, the average DP of cellulose in natural fibres is around 10,000. This characteristic can significantly affect the mechanical performance of the fibres.

Figure 1.4. Cellulose structure [7]
Cellulose contains regions that are highly crystalline or amorphous depending on their packing density. Most wood-derived cellulose contains more than 65% of crystalline regions [6]. Accessible and non-accessible cellulose can also be distinguished [6]. Concerning crystalline cellulose, only the surface part is accessible whereas the majority of amorphous cellulose is accessible. This concept is very important as it can have a significant impact on the durability of cellulose, affecting its moisture sorption capacity, its chemical interaction with aggressive agents and its sensitivity to microorganisms. Cellulose is resistant to most solvents, including strong alkali, but can be hydrolysed by strong acids.

1.3.2 Hemicellulose

Hemicellulose combines many different polysaccharides composed of 5 and 6 carbon ring sugars plus glucuronic and galacturonic acids [8]. Hemicelluloses have lower DP than cellulose and present a heterogeneous, amorphous, branched structure.

They form the supporting matrix for cellulose microfibrils [7].

Hemicelluloses are highly hydrophilic, easily hydrolysed by acids and soluble in diluted alkali solutions. This property could notably affect the durability of plant aggregates in an alkaline mineral matrix (cement, lime etc.) and the bonding mechanisms at the interface in these composite materials.

1.3.3 Lignin

Although the exact chemical nature of lignin remains obscure, most of the functional groups and units have been identified. Lignins can be described as amorphous, highly complex, three-dimensional, mainly aromatic polymers of phenylpropane units [6, 9]. A structure of soft wood lignin proposed in [7] is represented in Figure 1.5.

During the synthesis of plant cell walls, the production of cellulose and hemicelluloses is accompanied by the filling of the spaces between these two polysaccharides by lignins, binding them together. This is called the lignification process and leads to the stiffening of cell walls. The main roles of lignin in plants is thus to support them and to protect them from chemical and physical degradation [7].

Moreover, lignin is generally resistant to microbial attack. The nature and the amount of lignin thus affect the durability and the biodegradability of the different plant materials.
Lignin also plays an important role in water transport, providing the hydrophobic surface that allows water circulation within plants. Lignin is mainly found in the middle lamella of the fibre bundle, and also in the woody core and the epidermal and cortical cells of the plant stem [10]. The lignin content in plant aggregates mostly extracted from the woody core (xylem) of the stem is thus high in comparison with plant fibres.

![Proposed model structure for soft wood lignin](image)

Figure 1.5. Proposed model structure for soft wood lignin [7]

1.3.4 Pectin

Pectin is a collective name for different forms of polysaccharides made up of repeating units of α-1,4-linked galacturonic acid. Pectins are contained in the primary cell wall of most plants but they are also a major component of the middle lamella and constitute up to 5% of walls in woody tissues. The pectins ensure a variety of functions including mechanical properties, cell-cell adhesion, wall porosity and binding of ions [11].

They can be easily hydrolysed at high temperatures and are degraded by bacteria and mould during the retting process that is applied to fibrous plants (including hemp and flax) to separate the fibres from the non-fibrous part [1].
Pectins can create gels when divalent cations, like calcium or magnesium, form cross-linkages between adjacent polymers. This affinity with cations could interact with setting mechanisms of mineral binders such as Portland cement or lime used in bioaggregate-based composites.

1.3.5 Extractives

This category assembles different non-structural chemical components that can be easily extracted using polar or non-polar solvents (usually water, ethanol, toluene and ether). Extractives include some carbohydrates (monosaccharides, starches etc.), lipids (fats, oils, waxes etc.), proteins, hydrocarbons (terpenes etc.), phenolic compounds and inorganic materials. Their concentration in plants is relatively low (< 10%) but can be locally higher. For example, wax accumulates on the cuticle synthesized by the epidermal cells to provide a protective barrier against drying and the entry of microorganisms into the plant [12].

Others can be responsible for different properties of the plant material: colour, smell and durability [6]. In the case of bioaggregates incorporated into a mineral matrix, these extractives can interact with the mineral species of the binder and degrade its properties (see part 1.6).

1.3.6 Ash

Ash is defined as the inorganic matter of a biomass. These components can be structural, i.e. bound in the physical structure of the biomass, or extractable, if they can be removed by washing or extraction [13].

According to Vassilev [14], the inorganic compounds can be divided into three categories: crystalline (mineral species from phosphates, carbonates, silicates, chlorides, sulfates, oxides and hydroxides, nitrates, etc.), semi crystalline (poorly crystallized forms of some silicates, phosphates, hydroxides, etc.) and amorphous (amorphous phases such as various glasses, silicates, etc.).

The ash content is usually low, although this parameter can vary considerably among plants as it depends on genetic and environmental factors, and also on physiological and morphological characteristics of the crops [14].

According to Picandet [1], this mineral content can be significantly higher in plants with high silica (SiO₂) content, especially rice or wheat straw. On the contrary, whatever the time of harvesting (from 30 days to 120 days) the amount of silica is very low in hemp stems (< 1.5%) [15].
For most plant fibres, the structural mineral content remains below 2% according to Akin [12] but can be much higher locally in the plant. Akin cites the case of calcium accumulated in flax epidermis up to an amount 6 times that in the fibre tissue. Some plants (flax, hemp and cotton) can also accumulate heavy metals such as lead (Pb), copper (Cu), zinc (Zn) and cadmium (Cd) [16]. This last point is also highlighted by Linger [17], who shows the good possibility of cadmium phytoextraction from hemp. This point could nevertheless induce some health concerns for further use as bioaggregates in building applications.

1.3.7 Water

In plant materials, the moisture content consists of water with dissolved free ions. Its content normally varies in the range of 10 to 60% but it can reach even 80 to 90% in some raw biomass species [14].

Water is largely present in the cell walls and can influence some of their properties. According to Khanna [18], for example, hydrated walls are more flexible and extensible than non-hydrated walls. The moisture content of plant aggregates could significantly affect their macroscopic properties, especially their compressibility. This characteristic can largely modify the fresh and hardened performances of composites including these bioaggregates.

1.4 Chemical composition of bioaggregates

1.4.1 Chemical composition of bioaggregates measured by indirect methods

This part brings together data on the chemical composition of different bioresources that have been studied as bioaggregates incorporated in a mineral matrix in previous works.

The values reported in are related to different plant aggregates: hemp and flax shives; corn cobs and stalks; sunflower stalks, pith and marrow-less stalks; wheat straw; and lavender stems. Typical compositions of hemp and flax fibres used for mineral matrix reinforcement are also reported for comparison.

The data collected come from the literature on bioaggregate-based building materials and also from published studies of lignocellulosic feedstock characterization mainly for biofuel applications. E.g., a recent study by Vassilev et al. [14]
gave an extended review of cellulose, hemicellulose, lignin and bulk extractives contents of 93 varieties of biomass.

The analytical methods applied in these studies can differ from one lab to another. They are mainly indirect gravimetric methods based on successive fractionation steps with different solvents, associated with washings, filtrations, evaporation and weighings or assays. Previous studies have given detailed reviews of the different existing wet chemical analytical methods that have been published [21], [22], [23].

Historically, most of these experimental procedures come from two main sectors: the wood and food industries [20]. The general structures of these two groups of experimental procedures differ slightly as shown in Figure 1.6.

Figure 1.6 Synthetic sketch of the two main analytical procedures to access the biomass composition adapted from [20]

Numerous indirect wet-chemical methods have been developed and published for more than 100 years. Among the most commonly used are the methods proposed by Klason [24], Saeman [25, 26] or Van Soest and Wine [27]. Some of them constitute the basis of current standards of ASTM (American Society for Testing Materials), TAPPI (Technical Association of the Pulp and Paper Industry), or of the Laboratory Analytical Procedures (LAPs) of NREL (National Renewable Energy Laboratory). But some procedures have also been adapted and modified locally and so details concerning the complete procedure are often missing.

Sluiter et al. [13] identified numerous differences between existing methods of biomass compositional analysis based on a sulfuric acid hydrolysis:

- drying method (air dried, dried at 100 or 105°C),
- nature of the extraction solvents (alcohol/benzene, hot and cold water, acetone/water etc.),
- extraction time,
– sample amount,
– temperature, time, biomass to acid ratio, and H$_2$SO$_4$ concentration of primary and secondary hydrolysis.

The variations of these parameters among the procedures applied can induce significant disparities in the results and make it difficult to compare compositional data from interdisciplinary research groups [21]. Furthermore, by analysing 154 replicate samples of the same feedstock, with the same procedure by 7 analysts in 2 different laboratories, Templeton et al. [19] demonstrated how small method changes (dysfunctioning solvent extractor and leaking gasket) could strongly affect the uncertainties of these empirical methods.

A detailed comparison of the different wet chemical procedures applied to biomass in the literature is given in [21], where the author highlights the limitations of each method. Due to incomplete fractionation steps or, conversely, solubilization of unexpected materials, these procedures can lead to overestimation or underestimation of some lignocellulosic compounds.

Finally, the accuracy of the results depends largely on the choice of hydrolysis conditions, which should be adapted for lignocellulosic feedstocks of different natures (soft wood, hard wood, herbaceous species, etc.).
<table>
<thead>
<tr>
<th>Aggregate nature</th>
<th>Cellulose</th>
<th>Hemicellulose</th>
<th>Lignin</th>
<th>Pectin</th>
<th>Waxes</th>
<th>Soxhlet extraction</th>
<th>Protein</th>
<th>Others</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemp hurds</td>
<td>HS</td>
<td>36-41</td>
<td>31-37</td>
<td>19-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>Hemp hurds/shiv</td>
<td>HS</td>
<td>44</td>
<td>25</td>
<td>23</td>
<td>0.6</td>
<td>1.8</td>
<td>1.2</td>
<td>1.6</td>
<td>[29]</td>
</tr>
<tr>
<td>Corn cob</td>
<td>CC</td>
<td>48.1</td>
<td>37.2</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn stalks</td>
<td>CSst</td>
<td>49</td>
<td>37.9</td>
<td>13.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[14]</td>
</tr>
<tr>
<td>Sunflower stalks</td>
<td>SSst</td>
<td>71.6</td>
<td>12.3</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax shives</td>
<td>FS</td>
<td>39.9</td>
<td>26.8</td>
<td>33.3</td>
<td></td>
<td></td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat straw</td>
<td>WS</td>
<td>44.5</td>
<td>33.2</td>
<td>22.3</td>
<td></td>
<td></td>
<td>12.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>47.3</td>
<td>18.3</td>
<td>21.8</td>
<td></td>
<td></td>
<td>6</td>
<td>3.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>45.6</td>
<td>17.8</td>
<td>23.3</td>
<td>5.1</td>
<td>2.6</td>
<td>8.1</td>
<td></td>
<td>[30]</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>49.2</td>
<td>21</td>
<td>21.9</td>
<td>6.2</td>
<td>3.5</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>52</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>[31]</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>48</td>
<td>12</td>
<td>28</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>[32]</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>48</td>
<td>12</td>
<td>28</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>[33]</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>48</td>
<td>21.25</td>
<td>17-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>37.7</td>
<td>26.8</td>
<td>22.1</td>
<td></td>
<td></td>
<td>8.87</td>
<td></td>
<td>[35]</td>
</tr>
<tr>
<td>Hemp core</td>
<td>HS</td>
<td>38</td>
<td>31</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[36] cited in [37]</td>
</tr>
<tr>
<td>Hemp core</td>
<td>HS</td>
<td>34.5</td>
<td>17.8</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[37]</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>48</td>
<td>12</td>
<td>28</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td>[38] cited in [1]</td>
</tr>
<tr>
<td>Plant Type</td>
<td>Code</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>HS</td>
<td>44</td>
<td>18</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax shiv</td>
<td>FS</td>
<td>34.2</td>
<td>21.3</td>
<td>30.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax shi</td>
<td>FS</td>
<td>53</td>
<td>13</td>
<td>24</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower stalk</td>
<td>SS</td>
<td>42.1</td>
<td>29.7</td>
<td>13.4</td>
<td>5.9</td>
<td>1</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marrow-less sunflower SS</td>
<td>SS</td>
<td>38.6</td>
<td>22.8</td>
<td>16.2</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower marrow</td>
<td>SP</td>
<td>47.4</td>
<td>9.4</td>
<td>3.5</td>
<td>6</td>
<td>20.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp fibre</td>
<td>HF</td>
<td>76.12</td>
<td>12.28</td>
<td>5.65</td>
<td>1.55</td>
<td>3.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax fibre</td>
<td>FF</td>
<td>80.1</td>
<td>14.9</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax fibre</td>
<td>FF</td>
<td>67</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marrow-less sunflower SS</td>
<td>SS</td>
<td>41.4</td>
<td>30</td>
<td>18.3</td>
<td></td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower marrow</td>
<td>SP</td>
<td>47.4</td>
<td>9.4</td>
<td>3.5</td>
<td>6</td>
<td>20.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavender branches</td>
<td>LB</td>
<td>33.6</td>
<td>13.9</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavender leaves</td>
<td>LL</td>
<td>13.1</td>
<td>12.7</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavender branches</td>
<td>LB</td>
<td>42.7</td>
<td>13</td>
<td>23.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavender leaves</td>
<td>LL</td>
<td>19.9</td>
<td>3.6</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavender flowers</td>
<td>LF</td>
<td>22.4</td>
<td>12.6</td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The structural composition of bioaggregates, i.e. the cellulose, hemicellulose and lignin contents (normalized to 100%) is represented in Figure 1.7 as proposed in [14]. This presentation allows 6 subgroups to be distinguished, characterized by consecutively decreasing quantities of the three structural components.

A glance at the structural distribution shows that almost all the lignocellulosic materials used as bioaggregates to date are of the CHL or CLH types. This reflects the nature of bioaggregates, which are mainly woody residues (hemp and flax shive) and herbaceous or agricultural biomass (straws, stalks or fibres).

Bast fibres of flax and hemp used as flexural mechanical reinforcement in a cementitious matrix exhibit compositions richer in cellulose and with lower lignin content than in sunflower pith. Concerning lavender, the results distinguish between branch, leaf and flower compositions whereas the current applications in building propose the use of a mix of the entire plant including these different parts.

Among the main group of bioaggregates, sunflower and corn biomass shows the lowest lignin content while lavender stem presents the highest, and flax and hemp shives have intermediate values.
We note a large dispersion among the results of the different references for the same bioresource. For example, for hemp shiv (12 references), the cellulose, hemicellulose and lignin contents range respectively from 34.5 to 52%, from 9 to 34.5% and from 18 to 28%. Several parameters can explain these variations. The first one, as already mentioned, is the disparity in the analytical procedures applied to determine the chemical composition but effective differences in the proportions of the chemical components can be induced by other factors:

- the geographical location,
- the age of the plant,
- the climate,
- the soil conditions,
- the variety,
- the spatial location within the plant,
- the processing method applied to obtain the bioaggregates, etc.

The study carried out on lavender [51] followed the evolution of its chemical composition with the seasons and revealed large variations in cellulose and hemicellulose contents of lavender branches and leaves between winter and summer.

Concerning the extractives and ash contents of the bioaggregates, the collected results are very disparate (see Table 1.1). First, depending on the wet chemical method applied, some studies only determined a bulk extractives content, whereas others detailed the pectin, wax/fat, protein and ash contents or at least Soxhlet extractives, ash and others. However, these categories are not always distinct. For example, ash content can be partly included in Soxhlet extractives or in “others”. As a result, the comparison between the different studies becomes quite complicated.

Nevertheless, by summing pectin, wax, fat, and protein contents or considering Soxhlet extractives, the bulk extractives contents of bioaggregates can be compared. They range from 4 to 12.4%. No correlation can be revealed with the nature of the aggregate as, within the eight results concerning hemp shives, the extractives content ranges from 4 to 12%.

Concerning ash content, for hemp and flax shives, it is less than 5%; but, for sunflower aggregates, it is significantly higher and reaches 20% in the pith. Yin et al. [44] attribute this result to the high proportion of soluble inorganic elements resulting from the substances taken up by the plant.

The differences between the references can be largely attributed to variations in experimental protocols. Moreover, the measurement uncertainties will be relatively higher for components present in small quantities, such as extractives and ash.

This idea is confirmed by Diquelou’s study [30], which determined, with the same chemical procedure, the composition of three different hemp shives, from
different geographic zones and with different times of harvesting and different types of retting and processing. Cellulose, hemicellulose, lignin, extractives and ash contents were quite similar among the three hemp shives. The only major difference appeared in the non-identified fraction which ranged from 1.6 to 8.1%.

This part has shown the difficulty of obtaining accurate and comparable data for the chemical composition of bioaggregates. A proven chemical procedure that is accepted worldwide is required. Nevertheless, any indirect quantification method based on various fractionation steps would result in a time consuming and expensive method. Moreover some of these procedures involve the consumption of large quantities of solvents, with economic, environmental and safety concerns.

For these reasons, other methods of characterization have been developed to allow fast, low-cost analysis. Some of them have been or could be applied to the characterization of bioaggregates; they are the subject of the next part.

1.4.2 Other methods to characterize biomass chemical composition

With the development of the biofuel industry and, more generally, of biorefinery applications, the analysis of lignocellulosic biomass feedstock has become a major concern. As previously explained, the traditional indirect empirical procedures need qualified technicians, time and money to obtain accurate results and, in any case, remain very sensitive to slight modifications of the experimental protocol.

Scientists are involved in the development of innovative methods and are looking for rapid, inexpensive techniques that would allow real-time chemical analysis of biomass.

Some additional analytical methods can also complete the traditional chemical analysis and identify the hydrolysates produced during the different fractionation steps. For example, chromatography methods are used for the quantification and analysis of carbohydrates. Nevertheless, few studies have been performed on bioaggregates for building applications. Gandolfi [29] used High Performance Liquid Chromatography (HPLC) to identify the nature of extracted free amino acids and monosaccharide mixture resulting from the hydrolysed fraction of hemp shives. In the same article, he also explored the nature of lipid extractives using Gas Chromatography with Mass Spectroscopy (GC/MS) and detected mainly fatty acids, alkanes, aldehydes and sterols. Diquelou et al. [30], analysed the carbohydrate fraction of water extracts of hemp shiv with High Performance Anion Exchange (HPAE) Chromatography and evidenced different proportions of each monomer in the three hemp shives studied. Diquelou also applied the Bradford colorimetric assay to determine the quantity of proteins in the shiv water extracts. Finally, the
amount of phenolic and lignin-like compounds in the water extracts was directly determined with UV spectrometry. This technique is adequate to accurately estimate lignin content as lignin absorbs more strongly in the UV and visible regions than cellulose or hemicellulose, even though the identification of an appropriate calibration standard can present some difficulties [53]. In any case, for biomass quantification purposes, a preliminary fractionation step would be necessary and would then present the same disadvantages as traditional compositional analysis based on biomass hydrolysis.

However, other non-invasive methods have been proposed recently, such as Near Infrared (NIR) spectroscopy or Fourier Transform Infrared (FTIR) spectroscopy.

FTIR has been used for qualitative comparison of hemp shiv before and after immersion in an aggressive solution of diluted cement [30]. The authors highlighted the disappearance of different peaks attributed to the degradation of pectin or hemicellulose, and to lignin. Nozahic [54] used Attenuated Total Reflectance (ATR) in conjunction with FTIR to directly characterize the chemical composition of the surface of hemp shiv. The results of this study will be presented in the next section. In this work, too, the spectroscopic data were only qualitatively exploited.

Nevertheless, these methods can permit a quantitative chemical analysis of biomass, although, to the best of our knowledge, they have never been applied to bioaggregates for building materials. As presented in [55; 56] NIRS and FTIRS spectral analysis can be applied for rapid, accurate, non-destructive quantification of biomass components (ash, moisture, cellulose, hemicellulose and klason lignin) if coupled with efficient calibration models. The construction of these calibration models needs data on chemical composition obtained by traditional wet chemical techniques and chemical absorption spectra obtained by spectroscopy, and uses a statistical approach, such as Partial Least Squares (PLS). As emphasized in [13] the condition for obtaining good data quality from NIR is then the good data quality of the wet chemical procedures used for calibration.

A detailed study was conducted by Sanderson et al [57] on 121 samples covering a large range of biomass materials. For the different components, calibration models were built from NIRS spectra (see Figure 1.8) and wet chemistry data.
Figure 1.8. Representative near infrared spectra of various biomass feedstocks [57]

These calibration curves (see Figure 1.9) were then used to predict the chemical composition of a set of 20 samples. The authors concluded on the good ability of NIRS to predict the chemical composition of a broad range of biomass feedstocks, but they also highlighted the need to test a much larger quantity of samples to establish robust calibrations.
Thermogravimetric analysis can also be applied to quantify cellulose and hemicellulose contents as shown in [20]. The authors used this alternative method to characterize two different biomasses: fern and wood. The degradation of hemicellulose, α-cellulose and lignin occur respectively in the temperature ranges of 200-300°C, 250-350°C and 200-500°C. Applying a deconvolution computation of the DTG curves (see Figure 1.10), Carrier et al. [20] identified the contents of the three structural components and compared them to the results obtained by classical wet methods. The calibration curves obtained were then used for the chemical analysis of cellulose pulps by ATG. They concluded that the accuracy of the thermogravimetric method was good for the determination of hemicellulose and α-cellulose contents in cellulose pulps but they noted the incapacity of the method to obtain the lignin content because of large deviations in the correlation curves.
Figure 1.10. Deconvolution computation of DTG curves from Origin software with X: Temperature(°C) and Y: DTG-d(m/m0)/dt (%/°C). Black = experimental DTG; Green = calculated peaks from the deconvolution computation with Origin software; Red = simulated DTG curve [20]

Finally, numerous studies in the literature have used X-ray diffraction (XRD) to characterize lignocellulosic materials. This method is mainly applied to assess the crystallinity of cellulose, which influences its tensile mechanical performance [58]. Although most of the components of biomass present a non-crystalline character, some mineral constituents can, nevertheless, be easily identified by XRD. Vassilev et al. [14] detected opal, calcium oxalates, calcite and halite in plum pits, walnut shells, corn cobs, beech wood chips and rice husks. The authors also emphasized that XRD could reveal useful information concerning the amorphous parts; the positions and shapes of the halos can serve as an additional method to help describe the chemical composition of the lignocellulosic compounds.

1.5 Surface characterization of bioaggregates – adhesion between lignocellulosic aggregates and a mineral binder

The methods presented in part 1.4 give the chemical composition of milled lignocellulosic compound, but, as stressed by Nozahic et al. [54], sunflower aggregate, for example, is largely heterogeneous (see Figure 1.11).
It has been shown elsewhere that this is also the case for hemp shiv [59]. Depending on their location inside the stem of the plant, these lignocellulosic aggregates can be of three distinct types: one is part of the epidermis, another can contain pith and the last is mainly composed of xylem cells.

This anisotropic character at macroscopic scale induces strong heterogeneity in the chemical composition of the aggregate. The chemical components of bioaggregates can cause some undesired interactions with the matrix (as will be developed in part 1.6) but can also enhance the adhesion with the matrix. As shown by Coutts and Kightly [60], hydrogen bonding and/or hydroxyl bridges between the hydroxyl groups of mineral paste and the covalent hydroxyl, phenolic or alcoholic groups of cellulose and lignin of wood can play a major role in the bonding of wood-fibre-reinforced cement (WFRC). The same phenomena may occur in bioaggregate-based building materials.

Attenuated Total Reflectance (ATR) in conjunction with FTIR has been used to analyse the surface chemistry of sunflower aggregates (inside and epidermis) [54]. A qualitative comparison of the spectra (Figure 1.12) allowed these authors to conclude that there are significant differences between interior and epidermis. The first is richer in polysaccharides (the large peak between 3125 and 3600 cm\(^{-1}\)) results from -OH hydroxyl group stretching) whereas the epidermis presents higher wax and fat contents (stretching vibration of CH\(_2\), at 2920 and 2850 cm\(^{-1}\)).
In the same study, the local chemistry analysis by FTIR was also used to explore the impact of three different treatments of the sunflower aggregates: Ca(OH)$_2$, linseed oil and paraffin wax. With Ca(OH)$_2$ treatment, Nozahic observed:

- lowered peaks and, in particular, a strong decrease in hydroxyl –OH stretching bands, attributed to the hydrogen bonding with Ca$^{2+}$,
- precipitation of calcite,
- the disappearance of C=O stretching of carboxylic acid in pectin, caused by the removal of pectin in the alkaline medium or by Ca$^{2+}$ ion trapping by these components.

The other two treatments only resulted in a large increase of the CH$_2$ methylene group stretching peak. The author explains this result by the deposit of waxy or oily components on the surface of the bioaggregates.

1.6 Chemical interactions between bioaggregates and mineral binders

The literature about bioaggregate-based building materials highlights the chemical interactions that can occur between lignocellulosic particles and mineral binders. These interactions can take place at different times:

- at early age, they can disturb the setting and hardening mechanisms of mineral binders,
- in the hardened state, they can modify the properties of the composite,
- in the long term, they can influence the durability of the material.

This part aims to present a synthesis of the studies performed on these interactions, focusing on the consequences on composite performances, the mechanisms
of interaction (when described) and the influential parameters. The last paragraph will describe the corrective actions proposed to overcome these interactions.

Few studies have been conducted specifically on bioaggregate-based building materials, but similar concerns are largely studied in the sector of wood cement and natural-fibre-reinforced cement/concrete. Results from these domains are thus discussed in this section as the mechanisms involved and their consequences can be common.

1.6.1 Short-term interactions between lignocellulosic particles and mineral binders

At the moment of mixing and during the early hardening of mineral binders, the interactions between mineral species and the lignocellulosic compounds can induce marked disorders: setting delays, changes in the quality and the quantity of hydrates or complete inhibition of the binder setting.

A significant study by Diquelou et al. [30] explored the chemical interactions between hemp or flax shives and Portland cement CEM I 42.5 R matrix. After three days of hydration, the authors carried out FT-IR analysis. This showed the formation of a halo surrounding the hemp particle and corresponding to some non-hydrated cement (see Figure 1.13). To complete the analysis, they proposed a new method based on the use of a labelled flax pellet enriched with carbon-13 isotope (13C). This technique allowed them to monitor the migration of extractives into the paste and to correlate it with the hydration rate of the paste determined through TGA analysis. They distinguished three distinct zones around the pellet (see Figure 1.13):

- in the first zone (0 to 3 mm from the pellet) the inhibition of the cement setting was almost total,
- in the second zone (3 to 8 mm from the pellet) the setting of the paste was only delayed,
- in the third zone (more than 8 mm from the pellet), the cement setting was not affected.
Figure 1.13 Photograph taken after 3 days of hydration of cement paste with two kinds of plant aggregate inclusion: one particle of shiv (arrow 1 and 2 indicate sampling points of FT-IR analysis) (a); pellet made of shiv powder (b) [30].

In the same study [30] the authors pointed out a decrease in C-S-H (calcium silicate hydrate) formation after 7 days and evaluated the deficit in portlandite Ca(OH)_2 amount to be around 40% after 28 days in comparison with neat cement. The inhibition of the formation of some hydrates is also demonstrated in [61], where a pozzolanic binder was associated with hemp shives. XRD and TGA analyses of the composites after 28 days revealed considerable modifications in the hardening process of the pozzolanic binder in presence of hemp shiv (residual portlandite, undetected calcium aluminate phases and a decrease in the amount of C-S-H). A higher calcium carbonate content was also detected, which is in accordance with the results presented in [65] on cement mixed with wood particles. The authors attributed this phenomenon to the release of carbon dioxide induced by the alkaline degradation of wood particles, which was responsible for the carbonation of portlandite.

Many other studies confirm the deleterious effects of different lignocellulosic materials on the setting and hardening kinetics and mechanisms of mineral binders. Among others, hemp fibres [62], wood particles [63-66], cereal straw ([67;68] cited in [69]), arhar stalks [70], sugar cane bagasse [71] and coir particles [72] were shown to negatively impact the setting and early hardening of cement paste. Wood particles can also be associated with a plaster matrix (calcium sulphate hemihydrate). Boustingorry et al. [73] emphasized that poplar and forest pine extracts clearly delayed the hydration of hemihydrate. Finally, the setting of a pozzolanic binder (mix of lime and metakaolin) was also affected by the presence of lavender stalks [74].

In the wood concrete sector, the compatibility between wood species and cement is generally assessed indirectly by calorimetric measurements. The decrease of heat release during cement hydration in presence of wood particles in comparison with neat cement is used to calculate various indicators, supposedly correlated with the extent of inhibition associated with the different wood particles.

A review of these indicators can be found in [63] and [75]. Direct indicators such as the maximum temperature of hydration T_{max} or the time needed to reach
this temperature (t_{max}) were used. More complex indicators were also proposed, such as C_A factor (ratio of the amounts of heat released by cement hydration with or without wood) [76], ratio of setting time of wood-cement composite to that of neat cement [77], initial rate of temperature rise [78], or other inhibitory indexes calculated from the relative differences in T_{max}, t_{max} and rate of temperature rise in presence or absence of wood [79;80]. Although they have been called into question by some authors [81, 82], these methods have been largely applied in wood-cement composites science to classify wood species in regard to their compatibility with cement and, recently, to cement mortar composites reinforced with cellulosic fibres [83]. Nevertheless, to the best of our knowledge, at present, no comparable study has assessed the chemical compatibility of biobased aggregates with different mineral binders.

Chemical interactions between lignocellulosic particles and mineral binders at early age involve complex mechanisms, which are not yet fully and precisely understood. Several hypotheses have been proposed in the literature.

The deleterious species responsible for the interactions are of two types: water extractives and products of the alkaline attack generated by the cement or lime-based matrix on the plant aggregates or fibres. Different studies have highlighted the distinct impact of these two components by separating their effects. Diquelou [30], for example, compared the effects of hemp shiv and water washed hemp shiv on the hydration of Portland cement CEM I 42.5 R. Govin et al. [84] monitored the hydration of Portland cement CEM I 52.5 R mixed with leaching solutions of wood in water, lime and cement. Although the relative proportion of the interaction attributed to one and to the other differed between the two studies, both underlined the strong delaying effect of both water extractives and alkaline degradation products.

Among the numerous studies focusing on this subject [30, 62-64, 66, 73, 79, 85-89], different families of extractives were identified as potential retarding agents for mineral binder hydration:

- monosaccharides such as glucose, galactose, mannose, rhamnose, arabino-ose, xylose,
- polysaccharides such as sucrose, arabinogalactan, xylan, starch, hemicellulose, pectin,
- phenolic compounds such as tannins,
- terpenes,
- organic acids such as acetic acid or fatty acid.

Nevertheless, observations differed among the various publications. Species with a strong inhibiting effect in one case were shown to have negligible impact in another (acetic acid and phenolic compounds in [73], terpenes in [86]). Kazma et al. [90] even demonstrated the benefits of incorporating large quantities of sucrose into a flax shives and Portland cement CEM I 52.5 composite (increased mechan-
ical performance and decreased setting time). These differences could result from the large number of influencing parameters that will be detailed at the end of this part.

Moreover, as pointed out in [30] the exhaustive identification of water extracts of three distinct hemp shives is not easy to achieve through common wet chemical analyses. A fraction of 15% to 30% in mass remains unidentified and the authors conclude that these unknown molecules may have a potentially major effect on cement setting.

As mentioned above, the degradation of lignocellulosic aggregates in the alkaline medium of the mineral binders can produce additional molecules with a negative effect on binder hydration. These reactions have been extensively studied in the pulping industry, where they are used to produce cellulose pulp from wood or fibre crops. In the area of wood-cement composites, hemicellulose is identified as the most sensitive component of wood particles. Hemicellulose is hydrolysed under soft alkaline conditions and this reaction leads to the formation of carboxylic acids (such as glycolic, pyruvic, malic or o-salicylic acids) that can act as strong retarding agents for cement hydration [84]. Hemicellulose degradation is also observed on hemp shives [30] and cellulosic fibres [83] immersed in a Portland cement solution and on hemp fibres subjected to alkaline treatment (NaOH) [62, 88]. Concerning the degradation of lignin, contradictory results can be found in the literature: the alkaline medium of cement partially dissolves lignin in hemp shiv [30] but does not affect its content in cellulosic fibres [83]. This point might be important as Bilba et al. [71] noted the significant retarding effect of lignin on the hydration of Portland cement. Cellulose is less impacted by the alkaline environment, even though amorphous cellulose can be hydrolysed [84]. Bilba et al. confirm its low impact on cement hydration.

Beyond the nature of the deleterious molecules responsible for the early age interactions between plant material and mineral binders, several studies have focused on their mechanisms of interaction [62-66, 91-92]. In addition, these chemical interactions can be compared with those studied in the context of organic admixtures for cement, i.e. polysaccharides, sugar acids or lignosulfonates used as water retention agents, water reducing agents or set-retarding agents [93-96]. The findings of these studies highlight the existence of distinct ways of action:

- trapping of calcium ions present in the binder solution by plant components. The consequent decrease in the concentration of Ca$^{2+}$ ions induces a delay in the nucleation process of Ca(OH)$_2$ and C-S-H. This phenomenon has been observed in cement and calcium hydroxide solutions mixed with wood [63] and hemp fibres [62, 91]. In these references, the authors concluded on the specific role of pectin, which can react with Ca$^{2+}$ ions in an alkaline environment to form a very stable “egg box” structure,
formation of a thin adsorption layer on the surface of cement grains [64, 92, 66, 94]. This less permeable coating slows down the hydration process by preventing the migration of water to the anhydrous part of the grain,

- poisoning of the nucleation sites by adsorption on the first Ca(OH)$_2$ and C-S-H hydrates [93, 95]. In the first step, sugars would increase the dissolution rate of anhydrous cement but, in the second step, their adsorption onto the first hydrates would inhibit their growth,

- formation of calcium carbonate [65]. Govin et al. evidenced the early carbonation of cement paste in the presence of wood. They attributed this reaction to the release of carbon dioxide due to alkaline degradation of wood. Nevertheless, this conversion of portlandite to calcium carbonate is not necessarily negative.

In the cited articles, numerous parameters thus appear to have a significant influence on the short-term chemical interactions between lignocellulosic compounds and mineral matrices:

- the nature of the inhibitory molecules,
- the concentration of plant extracts. The degree of inhibition exerted by wood extracts and polysaccharides on cement hydration has been found to be correlated with their concentration [66, 73, 75, 93, 94],
- the nature of the binder [65, 66, 71, 73, 92]. Different binders (cement and plaster) can be influenced differently by the same molecules. Most of the results reported in the literature concern Portland cement hydration and hardening, but the mechanisms involved in the case of lime or pozzolanic binders might be significantly different. The alkalinity and the nature of the main ions of a given binder might strongly modify the mechanisms of degradation of lignocellulosic compounds and their interactions with mineral species [96]. In fact, as shown by [94] and [95], the chemical interactions between mineral binders and plant products depend on the mineralogical nature of the binder phases. Concerning cementitious binders for example, C$_3$A content appears as a key parameter [94, 96]. pH also influences the interactions as reported by Sedan et al. [91] and Jorge et al. [63]. Finally, the addition of a pozzolanic mineral material to cement can reduce the deleterious effect of wood extractives on cement setting [66],
- the production process of plant aggregates. Diquelou et al. [30] showed that extracts of ground-retted hemp shiv contain more sugars and unidentified products than non-retted hemp shiv. Their impacts on cement hydration and hardening are consequently more severe. The authors put forward the hypothesis that the microbial activity during the retting process led to the extraction of additional products, either by microorganisms’ metabolism or by cell wall degradation. In contrast, the removal of pectin due to the retting process [97] could reduce the capacity of hemp material to trap calcium ions. The retting process would then influence short-term interactions between hemp and cement in opposite ways, reducing the pectin con-
tent on the one hand but increasing the solubility of plant components on the other,
– the wood species involved. This influences the extractives content and their chemical compositions [63, 75]. Generally, hardwoods have much greater impact on the hydration of cement than softwoods do, because of their higher hemicellulose content [79]. Other authors have stated that more extractives are found in deciduous trees than in firs [66],
– the part of the wood involved. Heartwood is reputed to impact cement hydration more severely than sapwood because of its higher solubility, which leads to a higher proportion of potentially inhibiting molecules [63, 64],
– the storage conditions of the wood. Several studies listed by Na et al. [64] show that storing logs in outdoor conditions for weeks or months tends to reduce their sugar and starch contents and, consequently, to decrease the impact of the wood on cement hydration.

1.6.2 Medium and long-term chemical interactions between plant particles and mineral binder

A few references deal with medium-term interactions between plant particles and mineral binders and their consequences on the mechanical performance of the composites.

The most severe disorder observed on hardened composite including lignocellulosic compounds is poor cohesion between the plant compounds and the mineral matrix. This phenomenon is usually associated with a powdering of the binder. Diquelou et al. [30] explored this point by comparing the development of the compressive strength of cement paste mixed with a solution containing hemp shive extractives with that of neat cement paste. They reported a decrease in compressive strength of 25% linked to the reduced amount of hydrates (C-S-H and portlandite).

Comparable results are reported in [74] on a composite made of lavender stalks incorporated in a pozzolanic matrix. Its very weak compressive strength is attributed to the deleterious chemical interactions between lavender aggregates and the mineral binder. This hypothesis is confirmed by the comparison of the compressive performance of neat pozzolanic paste with that of paste containing lavender extractives. The latter exhibits a deficit of 20% in compressive strength after 49 days.

Dinh [61], working on the same binder but in association with hemp shives, highlights strong modifications of the hardening mechanisms in presence of plant aggregates. After 28 days of curing, the amounts of residual portlandite observed in the composite were larger than in the pure paste and quantities of hydrated
phases (straetlingite, ettringite and carboluminates) were smaller. The author concludes that there was partial inhibition of the pozzolanic reaction due to hemp shiv components. These interactions are strongly linked with the nature of the binder, as, in the same study, the results obtained with a commercial binder did not show that kind of deleterious interactions.

These medium-term defects could be the direct consequences of early age interactions, the mechanisms of which were described in the previous part. But other long-term interactions between plant particles and mineral species can occur, affecting the durability of the composite. To the best of our knowledge, no specific study has been made of these phenomena in bioaggregate-based materials. Nevertheless, the literature on the durability of plant-fibre-reinforced cement-based composites is very abundant. A recent review by Ardanuy et al. [98] synthesizes the latest research on this subject, including the ageing mechanisms. Although these articles deal with short or pulp fibres, which are much smaller than plant aggregates, common chemical mechanisms could be evidenced. The main phenomenon explaining the loss of durability of cellulose-fibre-reinforced cement-based composite is the mineralization of the reinforcement fibres by cement hydration products. Several references listed by Ardanuy et al. [98] report the diffusion and reprecipitation of hydrated calcium compounds in the porosity of the fibres. This induces a loss of flexibility and/or a weakening of the fibres, resulting in the embrittlement of the composites. Wei et al [99] complete this description with an additional degradation of the amorphous components of the fibres (lignin and hemicellulose) followed by the alkali degradation of cellulose. This proceeding degradation allows cement hydration products to infiltrate into the cell wall, resulting in the mineralization of the natural fibre.

Similar reactions may occur between plant aggregates and binders but their consequences might not be as negative. The aim of reinforcing cement-based mortar with plant fibres is to improve their flexural behaviour. The loss of ductility induced by fibre mineralization is then considered to lead to poor durability. However, in the case of bioaggregate-based building material, such a chemical interaction could even be beneficial, considering, for example, the compressive performance of the composite. In a review [92], Frybort reports two studies on cement-bonded particle boards that evidenced the diffusion of cement ions into the wood particles and the partial filling of the porosity by cement hydrates. The author concludes that the adhesive forces between the matrix and the wood inclusions are improved. In another study on hemp concrete [100], the mineralization of hemp aggregates after one year of ageing is evidenced through SEM observations. This phenomenon could be responsible for the continuous enhancement of compressive strength observed on the composite between 28 days and 1 year. The progressive mineralization of hemp shives, which are initially very compressible, might stiffen them by filling the porosity with calcium mineral hydrates. Nevertheless, to the best of our knowledge, there is no existing study exploring these phenomena over longer periods or using accelerating ageing test methods. Refer-
ences assessing the impact of such chemical interactions on other properties of the composites (thermal, hygric, acoustical etc.) are not found in the literature either.

1.6.3 Corrective treatments to enhance the compatibility between lignocellulosic materials and mineral binders.

Numerous studies have been conducted in order to propose corrective methods limiting the negative effects of chemical interactions between lignocellulosic particles and mineral binders. These methods aim to pretreat the plant particles or to modify the mineral binder, and differ depending on the time the deleterious chemical interaction lasts: short, medium or long term.

At the short term, most of the procedures found in the literature concern wood concrete and aim to overcome the delay in setting and hardening of the binder. To achieve this objective, two main types of methods are applied:

- the first one consists of eliminating the deleterious components of the wood particles. This removal can be performed using various aqueous extraction methods: with cold or hot water [30, 101-102] and with alkaline solutions [103-104]. The fermentation of sawdust [105] induces a decrease in its total sugar content and significantly improves its compatibility with cement. The treatment of the wood material by fungi [106 cited in 92] and the long-term storage of wood in outdoor conditions can effectively reduce the interaction [92]. Finally, coating the particles is also described in [64] as a method for preventing the contact between wood constituents and cement,
- the second one aims to accelerate the setting and hardening mechanisms of cement in order to offset the inhibitory effects of lignocellulosic components. Numerous cement curing accelerators have been studied in the literature, mainly calcium chloride, ferric chloride, magnesium chloride, aluminium sulfate and sodium silicate [107]. Semple et al. [108] compare the efficiency of 137 inorganic compounds for the manufacture of Acacia mangium cement composites. They conclude that the compounds bring specific benefits, with the dual ability to accelerate cement hydration and to form complexes with the inhibitory extractives. More recently, Matoski et al. [107] have explored the possible use of Pinus wood to compose wood-cement panels. When 4 accelerating admixtures (CaCl$_2$, MgCl$_2$, Na$_2$SiO$_3$ and Al$_2$SO$_4$) were considered, the best results were obtained with calcium chloride. This low-cost admixture [64] appeared as one of the most efficient accelerators [101, 109-110]. Beyond the use of curing accelerators, the partial substitution of cement by pozzolans (silica fume [109], opoca [66]) has proved to successfully limit the setting delay in presence of wood. Finally, a common technique largely described in the literature on
wood- and lignocellulosic-waste cement composites [64, 92, 111] is the injection of CO\textsubscript{2} as a curing process. The early carbonation of Portland cement reduces the pressing time of the components and improves the mechanical performance of the cured panels. Nevertheless, a homogeneous injection of CO\textsubscript{2} into the whole element can be a technical challenge, especially for thick elements (blocks). The incorporation of water-soluble carbonates into the mix could be an alternative source of carbon dioxide.

Authors often propose combining various corrective treatments to manufacture wood-cement composites with adequate performances. The corrective methods presented above and applied to the wood particles could be easily transposed to the treatment of bioaggregates [30]. However, accelerating methods that work well for cement will not necessarily be as effective on lime or pozzolanic binders. Further investigation is required to conclude on this point.

In addition to those already presented, various treatments can be applied to process wood or to improve some of its properties. These treatments can have a significant impact on the chemical interactions with the mineral binder. Thermal treatment [65, 73] and the water-vapour explosion process [112] induce a clearly negative effect on the setting of cement. The application of high temperature and/or pressure conditions to the wood modifies the chemical composition of its extractives by a partial degradation of its main components. In consequence, the low-molecular weight, water-soluble polysaccharide content, responsible for the inhibitory effect, increases.

Another group of pretreatment methods aims at improving the bonding between plant particles and mineral binder and consequently the mechanical performance of the composite in the medium term. Some of the methods already cited, alkaline solution treatments [62, 113] or hydrophobic coating [114], are used for that purpose. Other authors propose the use of mineral binder treatment [61, 114]. Nozahic et al. [54] assess the ability of three distinct treatments (soaking in Ca(OH)\textsubscript{2} solution, application of linseed oil, and paraffin wax coating) to improve the adhesion process of sunflower aggregate with a pumice-lime binder. The treatments induce modifications in the hygroscopic behaviour of the particle but only Ca(OH)\textsubscript{2} and paraffin wax promote better adhesion with the binder. A very simple, low-cost mineral pretreatment suitable for industrial production was proposed in [61]. Prior to their incorporation into the binder, hemp shives were treated with a part of the same binder. After 28 days, hemp concrete mixed with pretreated hemp shives exhibited a 48% increase in compressive strength in comparison with that containing untreated hemp shives.

In order to prevent the durability problems of plant-fibre-reinforced cement, preventive methods have been proposed. In a similar manner to that applied to treat short-term interactions, two kinds of procedure can be carried out: modifying the matrix or modifying the fibres [98].
The aggressiveness of the matrix can be reduced by a partial substitution of cement by pozzolanic additions such as silica fume [115-116] or metakaolin [117-118]. Accelerated carbonation is another alternative. Almeida et al. [119] significantly improved the durability of eucalyptus-pulp-reinforced cementitious composites through a 3 day curing phase until the samples were completely carbonated. According to the authors, the higher mechanical strength after the ageing process was attributable to the reduction of Ca(OH)$_2$ content, the lower porosity and the good fibre-matrix adhesion.

Finally, appropriate physical or chemical treatments of the fibres prior to their incorporation into the matrix can successfully prevent long-term deleterious interactions between fibres and matrix. The following are worth noting:

- hornification of the fibres, i.e. subjecting them to drying and rewetting cycles [98],
- hydrophobic coating [115, 120-121],
- soaking in a silica fume slurry [122],
- surface treatment with silanes [123-124].

1.7 Conclusion

The chemical composition of lignocellulosic particles can strongly impact their properties as bioaggregates included in a mineral matrix. These bioresources are mainly composed of three structural biopolymers: cellulose (C), hemicellulose (H) and lignin (L). Other secondary components such as pectin, various extractives and ash complete their chemical composition.

The chemical composition of various bioresources included in bioaggregate-based building materials have been reviewed by comparing the results of 24 published references. This review shows that they are mainly of the CHL or CLH types because of their nature, i.e. mainly wood residues (hemp and flax shives) and herbaceous or agricultural biomass (straws, stalks or fibres). This comparison highlights a large dispersion among the results of different references for the same bioresource, reflecting not only the effective variability of chemical composition due to agronomic, environmental and processing parameters but also the strong disparities in the results of common indirect gravimetric methods of biomass compositional analysis. Similar variations are observed in the extractives contents, which are, in fact, largely responsible for the negative chemical interactions between lignocellulosic compounds and mineral binders. In order to overcome this difficulty, scientists are currently involved in the development of alternative techniques mainly based on infrared spectroscopy, thermogravimetric analyses and X-ray diffraction. It is to be hoped that these works will lead to a fast, low-cost method for the chemical analysis of bioaggregates in the near future.
One of the main reasons why the chemical characterization of bioparticles is so important concerns the deleterious interactions that can take place with mineral binders.

At early age, they can disturb the setting and hardening mechanisms of mineral binders; in the hardened state, they can modify the properties of the composite; and, finally, in the long term, they can influence durability.

Even though these chemical interactions have been largely studied in the area of wood-concrete and natural-fibre-reinforced mortars and although the interaction mechanisms with a matrix of Portland cement are fairly well known in that context, very few studies have dealt with these concerns in bio-aggregate-based building materials such as hemp concretes. In particular, there are hardly any studies focusing on the chemical interactions between lime-based or pozzolanic binders and lignocellulosic particles.

Forthcoming studies should be based on the existing results in order to propose quick, easy methods for assessing the compatibility of potential bioaggregates with binders of different natures. When deleterious interactions are observed, corrective treatments based on the pretreatment of plant particles or on binder design optimization will have to be developed. This constitutes an essential step towards the large scale development of adequate manufacturing processes for bio-based building materials having valuable properties in use and guaranteed durability.

References

35

Chapter 2. **Porosity, pore size distribution, micro-structure**

Mike LAWRENCE and Yunhong JIANG

BRE Centre for Innovative Construction Materials, University of Bath BA2 7AY, United Kingdom - m.lawrence@bath.ac.uk

Abstract. The high porosity and microstructure of bio-aggregates are fundamental to their physical properties. Typically they have a low density and a complex pore structure. This has two principal effects. In the first instance, low density is associated with low strength, but also with low thermal conductivity. For this reason most bio-aggregates are not suitable for use as structural materials, but are eminently suited to act as a low density filler in composite materials conferring low thermal conductivity on the resulting biocomposite. The complex nature of their porosity results in a material that is able to readily adsorb moisture and humidity. This results in a material that has an exceptionally high moisture buffering capacity, a characteristic that is of great interest in building materials, because it tends to stabilise the internal environment of a building, thereby resulting in a much more health indoor environment.

This chapter considers the range of methods that can be used to measure porosity and to characterise the microstructure of materials in general, and discusses how some of these techniques have been used on bio-aggregates. It also identifies opportunities to use novel techniques on bio-aggregates in order to improve our understanding of their porosity, pore size distribution, pore connectivity and microstructure, all of which are characteristics that are essential to the optimisation of the performance of bio-aggregates within the construction industry.

2.0 **Introduction**

Porosity is a measure of the void fraction in a material. Voids can either be ‘closed’, and inaccessible or ‘open’ and connected to other voids and thence to the exterior of the material. The total porosity (ϕ) is defined by the ratio of the volume of void space (V_V) to the total, or bulk volume of the material (V_T):

$$\phi = \frac{V_V}{V_T}$$
Porosity can also be expressed as a percentage of the bulk volume of the material. In bio-aggregates the pores are formed during the growth phase of the plant and in the living plant they have the function of nutrient storage and transmission of water and nutrients from the roots to the rest of the plant. Plant stems have a low density of between 110 and 120 kg.m\(^{-3}\) and a high porosity of the order of 70-80%. The specific properties of bio-aggregates, such as low density, high porosity and the complexity of pore size and pore structure, result in a material that has a low thermal conductivity, and which is highly absorbent, capable of absorbing up to four times its own weight in water. Once the shiv has been dried out it has a high moisture buffer value, conferring on it the ability to passively manage internal humidity levels when used as a building material (Latif et al, 2015).

Porosity is a rather easy parameter to define, but certainly not so easy to quantify. The reason is that the void/space in bio-aggregates can span from few nanometres to centimetres or larger. There is really no one method that can adequately cover this enormous range in scale. In addition, the porosity can be modified or changed by a variety of processes during the test such as deformation, hydrothermal alteration and producing secondary or fracture porosity. Finally, the pore shape and connection structure (open and closed) have a significant effect on the porosity results depending on the testing approach (Bismarck, 2002, Brewer, 2014, Chundawat, 2011, Collet, 2008, Donato, 2012, Hamdi, 2015, Jerram, 2006). The aims of this chapter is to summarize many of the available techniques that can be used to analyse the porosity of bio-aggregate materials. Manger et al (1963) concluded that most of the total porosity measurements are variations on bulk volume/grain volume or bulk density/grain density approaches, and the apparent porosity measurements are made by variations of absorption methods for different fluids or gases. Anovitz et al (2015) summarized 10 methods for measuring the porosity and pore size distribution (PSD) used on core or crushed rock materials (Figure 2.1). This shows the range of pore sizes that each method is capable of measuring. It should be kept in mind that different techniques are based on different principles and have different capability for measurement. Depending on the natural properties of bio-aggregates, there is no best approach to determine their porosity. The combination of several techniques and comparing the results of pore structure from different methods may gain an insight into the complex pore system of bio-aggregates.
2.1 Techniques used to measure porosity

2.1.1 Imaging methods

With the development of digital images and computer software, image processing is a new and convenient method which is able to determine the pore size, pore size distribution, porosity and microstructure of bio-aggregates. There has been much progress in materials science, biology, and geology regarding the application of image analysis. It has become an important technique for the investigation of the porosity and particle size of bio-aggregates and bio-composites (Mer-mut et al, 2009, Ziel et al, 2008, Nimmo et al, 2004, Aydilek et al, 2002, Shen, 2015). A broad range of imaging methods are available to describe the nature of porosity in bio-aggregates materials. 2D techniques that can be used include: optical light microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), focused ion beam (FIB), transmission electron microscopy (TEM). The range of 3D techniques available include: nuclear magnetic resonance (NMR),
atomic force microscopy (AFM) and X-ray tomography (Anovitz et al, 2015). Based on the images of samples, computer image processing can be considered as an additional method of sample analysis. There are a wide range of image processing software available to analyse images, including ImageJ, MATLAB, ICY, Avizo, Image Pro and others (Grove et al, 2011, Yang et al, 2013). 2D image analysis allows the measurement of parameters such as pore or particle shape, pore or particle size and size distribution, spatial distribution of particles, and also the corresponding measurements for vesicles. With the use of stereology and/or 3D texture models, it is possible to investigate the meaning of these 2D measurements in the 3D volume. The 3D image analysis provides a direct way of testing the 3D particle/pore size measurements using X-ray tomography. Jerram et al (2006) summarized the features and limitations of 2D and 3D image analysis method (Figure 2.2).
Optical Microscopy

Optical Microscopy has been used since the 17th century when it was first used by Robert Hooke to describe ‘…minute bodies made by magnifying glasses with observations and inquiries thereupon.’ Since that time the optical microscope has been refined to produce the range of modern research microscopes used in laboratories today.

Transmitted Light Microscopy uses light that is transmitted from a source on the opposite side of the specimen to the objective lens. Normally the light is passed through a condenser to focus it on the specimen in order to maximise the amount of light available. The optimum set-up for specimen illumination and image generation is known as Köhler illumination after the man who invented it. It is
used for most of the optical configurations listed below. The microscope techniques requiring a transmitted light path include bright field, dark field, phase contrast, polarisation and differential interference contrast optics. Transmitted light microscopy relies on preparing samples that are sufficiently thin to allow the passage of light. Some materials remain opaque even when ground to a thickness of 30µm, and for this reason reflected light microscopes have been developed. The sample is often polished to a high degree in order to allow all the features to be seen in the same plane, and therefore remain in focus. Samples are illuminated from above through the objective.

Bright Field Microscopy is the most frequently used technique where no optical contrast methods are used. It uses transmitted light to view a specimen that contains inherent contrast or where the specimen has been stained to improve contrast. Figure 2.3 shows a transverse section of Hemp shiv that has been set in a blue stained resin under a x10 magnification and Figure 2.4 shows the central section of the same specimen under x40 magnification.

Figure 2.3 Cross-section of hemp shiv x10 (author)
Dark Field Microscopy uses oblique illumination, and is used for the detection of micro-organisms in unstained smear preparations and diatom studies. Phase contrast exploits the phenomenon that light slows slightly when passing through biological specimens. When used in conjunction with phase contrast objective lenses which contain a corresponding phase plate, degrees of constructive and destructive interference occur which produce the characteristic light and dark features in the image.

Polarised Light Microscopy uses plane polarised light to analyse structures that are birefringent, which is to say structures that have two different refractive indices at right angles to each other (e.g. calcite). Figure 2.5 shows a transverse section of hemp-lime in light polarised at 0° (left) and 90° (right). This clearly shows the coating of lime binder around the bio-aggregate and demonstrates that the binder has only limited penetration into the capillaries of the material.
Figure 2.5 Transverse section of hemp-lime in light polarised at 0° (left) and 90° (right) (author)

Differential Interference Contrast Microscopy is a more complex form of polarised light microscopy involving two slightly separate plane polarised beams of light to create a 3D-like image with shade of grey.

Stevulova et al (2014) used reflected light microscopy to examine the surface morphology of hemp shiv and the impact of different surface treatments (Figure 2.6).
Figure 2.6 Micrographs of original sample of hemp hurds (a) and chemically modified by NaOH (b), EDTA (c) and Ca(OH)2 (d) (40x magnification) (Stevulova et al, 2014)

2.1.1.2 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) is one of the most popular imaging techniques. Porosity can be measured by image analysis based on scanning electron microscopy incorporating digital image processing. In addition, the dimension, shape and the number of pores in bio-aggregates and bio-composites can be inspected by image processing analysis. The image analysis was developed using various mathematical morphology algorithms to provide a complete pore size distribution (PSD) curve for each sample. The main image processing tasks are sample preparation, specimen scanning process, image enhancement, pixel classification, and pixel clustering (Kaestner et al, 2008, Jerram et al, 2007). The key to be able to perform accurate digital porosity measurements is the ability to generate a porosity threshold image (one which separates the porosity voids from the rest of the objects in the image). The signals of the secondary electrons gives information on the surface topography. The backscattered electrons (BSE) gives complementary information of the chemical composition of the sample surface. High atomic number elements backscatter electrons more strongly than low atomic number elements, and thus appear brighter in an image. BSE are used to detect contrast be-
between areas on the sample surface with different chemical compositions. In a backscattering electron image, the relative difference between signals, known as the contrast, \(C \), can be obtained from the following equation:

\[
C = \frac{\eta_1 - \eta_2}{\eta_1}
\]

In which \(\eta_1 \) and \(\eta_2 \) are, respectively, the backscattering coefficients for high and low density materials. The minimum value of \(C \) in an image is defined by the threshold equation:

\[
i_B > \frac{4 \times 10^{-12}}{\epsilon C^2 t_f}
\]

In which \(i_B \) is the minimum beam current required to provide contrast \(C \), \(t_f \) is the time required to scan a 1000 \(\times \) 1000 pixel frame (typical SEM pixel density for a photomicrograph), and \(\epsilon \) is the detector “efficiency” (ratio of signal current to beam current). The ultimate resolution available with SEM is on the order of 0.5\(\mu \)m (Zhao et al, 1992).

There are many factors affecting the calculated results, such as the thin section thickness, threshold value, and pore circularity (Anovitz et al 2015, Marinello et al, 2008). Poor quality data can arise from the introduction of noise and inadequate or overzealous pre-processing methods, increasing user bias during thresholding. The kind of sample preparation required of the sample depends on whether it is electrically conducting or not. Non-conductive samples must first be sputter coated with an ultra-thin coating of an electrically-conducting material before imaging. Otherwise, samples will tend to charge when scanned by the electron beam leading to scanning faults and other image artifacts. The advantages of the SEM over optical petrography are greater depth of field and resolution, and a significantly higher magnification range. It can provide direct and detailed structural information including the shape and size of individual pore inside the bio-aggregates. The assumptions about pore shape are not made, but rather images capture this information directly. The disadvantage of SEM is that the obtained images are exactly two-dimensional grey scale image. The SEM images showed partly the inner structure of the samples and they cannot be considered completely as sections. It underestimates the pore radius due to only working part of the pore. However, Image-based analyses have been used to extract meaningful quantities which characterize pore structure and describe several spatial characteristics of porosity. Mathematical correction techniques are necessary to estimate unbiased pore body and opening sizes. Sizing techniques, a two-point correlation technique, and fractal analysis can be used to analyse the individual pore size, shape and distribution (Zhao et al, 1992).

During the past ten years, SEM image analysis has become an important tool for microscopic studies of bio-aggregates based materials. SEM images have been used to study aspects of bio-aggregates porosity by several researchers. Walker et
al (2014) studied the microstructure and pore size of hemp lime concrete using FESEM. The results showed that the morphology of hemp interface changed over time, from predominantly needle-shape at early ages to sponge and gel types at later ages. A wide distribution of pore size was evident in all binders. Most pores ranged from 200 nm to 2000 nm. Lubelli et al (2013) studied porosity and pore size distribution of a wet poultice by using a FIB-SEM with a cold stage and MIP. The incremental and cumulative pore diameter distribution obtained using cryo-SEM image method showed the prevalence of pore radii in the range of 100 nm. The total pore fraction varies between 26% and 44% and the mean pore radius between 110 nm and 160 nm. The total pore area obtained by image analysis was 44%, which is significantly smaller than the total pore volume measured by MIP (57.93%). This is might be due to the absence of pores diameter larger than 1.2 µm in the studied cryo-SEM images (Lubelli et al, 2013). Chundawat et al (2011) studied the shape, size (10 nm to 1000 nm), and spatial distribution of the pores on their location within the cell wall and the cell wall volume, ranged between 0.005 and 0.05 nm² per nm³ by using TEM-image analysis. Figure 2.7 showed how water was likely incorporated in additional hydrates resulting in weight gain (7 wt.%) of the hemp-lime concrete and abundant needle shaped hydrates are growing into the pores suggesting a reduction in pore size (Walker, 2014).

![Figure 2.7 Hydrates in hemp lime concrete made with commercial binder (a) and increased quantity of hydrates in the binder of hemp concrete saturated with water for 2 weeks. (Walker et al, 2014).](image)

There are a large number of papers which discuss SEM image analysis approaches to the analysis of the pore size distribution and pore shape of soil and membrane materials. However, there only few papers that use the SEM image analysis method to study porosity and pore distribution on bio-aggregates. Sassoni et al (2014) have used SEM to visualise the microstructure of bio-aggregate composites (Figure 2.8), but did not use the information to analyse the pore structure or pore size distribution.
Figure 2.8 Visualisation of the microstructure of low density (a & b), medium density (c & d) and high density (e & f) hemp shiv-magnesium oxide composites (Sassoni et al., 2014)
The SEM image analysis methods demonstrate the ability to quantify the nature of porosity in complex heterogeneous matrices. In the bio-aggregates, there is a hierarchy of pore types that range from micro-pore to organic meso-pore to fracture macro-pores. For future experimental work, SEM image analysis approach will be an important technique for analysing the porosity of bio-aggregate materials.

2.1.1.3 X-Ray Computed Tomography

X-ray computed tomography (XRCT) has been used to characterize the cellular microstructure and porosity of bio-aggregates materials. This method can produce the non-destructive and three-dimensional images to quantify the microstructure such as pore size distribution, porosity and tortuosity of the porous network. X-ray radiography physics is based on the Beer-Lambert law (Maire et al, 2001, Dougal et al, 2007). Pore are distinguished in X-XRCT on the basis of their linear attenuation coefficient, \(\mu \). This parameter depends on the electron density of the sample, the effective atomic number of the sample, and the energy of the incoming X-ray beam. XRCT comprises an X-ray source, a rotation stage on which the object is fixed, an X-ray detector and a reconstruction software (Jerram et al, 2007). Construction of a 3D map of a specimen, several X-ray radiographs of the sample are recorded at different viewing angles. This imaging information is then used in reconstruction software to recalculate the 3D map of the attenuation from the combination of the obtained radiographs. The Figure 2.9 shows the stages from image capture through to processing and finally to reconstructed 3D virtual texture ready for quantification. The crucial point in applying tomography to materials science is the achievable spatial resolution. For a limit resolution of the order of 8 \(\mu \)m, a cone-beam system can be used with a classical micro-focus X-ray tube as the source. Most recent lab systems routinely achieve resolution as low as 5 \(\mu \)m. Larger samples have a lower resolution, limited by the number of pixels. The best quality images in terms of signal-to-noise ratio and spatial resolution allowing high-resolution micro-tomography are obtained on synchrotron radiation (Maire et al, 2012).
Figure 2.9 Measuring 3D textures using XRCT techniques. X-rays are passed through the sample to produce a series of 2D images that are spaced close to each other (typically at resolutions of 7-30 µm). Sequential images are captured by rotating the sample or source. Using software such as Blob3D, the individual elements of the texture, such as crystals, can be sampled and quantified (Jerramet al, 2007).

There are several disadvantages about XRCT porosity analysis. These include: 3D methods are not always applicable if samples are too large or small; it is very expensive and cannot distinguish touching grains of the same mineral; nor can it clearly separate different minerals with very similar properties.

N. Mostefai et al (2015) investigated microstructural effects of hemp fibre and shiv addition on modified mortars by using X-ray tomography. Results showed that porosity level in hemp shiv modified mortar with regard to the weight content of 2 wt. %, is 5.08%, whereas, porosity in the case of hemp fibre modified mortar is 3.54%. Both of hemp filler play a significant role in triggering the porosity content. The porosity of wood bark insulation board was studied by using XRCT (Figure 2.10). The results showed that pore size distribution is clearly influenced by the panel density and the small pores (< 1mm²) are predominantly pores within the bark materials itself. In addition, larger pores (>1 mm²) are void due to imperfect stacking during the press process.
Figure 2.10(a) X-ray μ-tomography images of hemp fibre (MHFA) and shiv (MS22) modified mortars. Representative dimensions are 26 Å~22 Å~21 mm³ and 37 Å~38 Å~22 mm³ for MHFA and MS22, respectively. (b) In-depth views showing porosity and hemp phase arrangement. Crop volumes are 24 Å~21 Å~16 mm³ and 38 Å~38 Å~19 mm³ for MHFA and MS22, respectively. (Mostefai et al, 2015)

Pores smaller than 1 mm² account for between 8% and 30% of the pore area (Kain et al, 2015). William et al (2015) studied the volumetric ratios change of visible air voids related to consolidation process in the level of macro scale by using XRCT. The results showed that the ratio of macro scale air voids to micro scale air voids changed significantly during the consolidating process. S. Hamdi et al (2015) studied and compared the X-ray computed tomography and 2D image analysis on lignocellulosic fibres raw materials. The strengths and drawbacks of the applied imaging methods on lignocellulosic materials are listed in Erreur ! Source du renvoi introuvable.
Table 2.1 Characteristics of the X-ray CT and 2D scanning methods for lignocellulosic fibre size estimation. (Hamdi et al, 2015)

<table>
<thead>
<tr>
<th>Imaging Technique</th>
<th>Strengths</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray CT</td>
<td>- Suitable for the detection of small fiber entities.</td>
<td>- Fibers with a length greater than the maximum 3D spatial resolution of</td>
</tr>
<tr>
<td></td>
<td>- High level of detail and ability to internally observe the structures.</td>
<td>the X-ray microtomograph cannot be assessed.</td>
</tr>
<tr>
<td></td>
<td>- Reliable fiber size estimation for regular fiber shapes with low rates</td>
<td>- Fibers with a diameter smaller than the minimum 3D spatial resolution of</td>
</tr>
<tr>
<td></td>
<td>of porosity and small amounts of large bundles.</td>
<td>the X-ray microtomograph cannot be assessed.</td>
</tr>
<tr>
<td></td>
<td>- Does not reject fiber size estimation of hollow fibers (which can be</td>
<td>- Underestimates the fiber size distribution of heterogeneous fiber</td>
</tr>
<tr>
<td></td>
<td>filled).</td>
<td>elements.</td>
</tr>
<tr>
<td>2D scanning</td>
<td>- Reliable fiber size estimation for regular fiber shapes with low rates</td>
<td>- Exponentially overestimates the fiber size distribution of a heterogeneous</td>
</tr>
<tr>
<td></td>
<td>of porosity and small amounts of large bundles.</td>
<td>fiber population with a high porosity level.</td>
</tr>
<tr>
<td></td>
<td>- Relatively easy implementation and high reproducibility.</td>
<td>- Underestimates the fiber length distribution of a heterogeneous fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network with high rates of tortuosity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The fibers need to be manually spread over the scanner surface to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prevent inter-fiber contacts.</td>
</tr>
</tbody>
</table>
Tran et al (2015) studied the porosity of coir fibre by using SEM image analysis and XRCT analysis. The results from SEM methods with software Leica QWin showed that the fibre porosity is in the range from 22% to 30% (Figure 2.11). In reality, the lumen of each elementary fibre is not a cylinder. In this case, the volume of lumens can be underestimated when a smaller cross section is analysed. The porosity of the coir fibres using XRCT methods, ranges from 27% to 40%. The fibre porosity analysed with this method is likely to be overestimated because the method is based on the densitometry principle, and there is only a small difference in density between coir fibres and air. In addition, coir fibres consist of various thin organic tissues, which may not be detected on the scanned images. The author concluded that Image analysis on SEM pictures will give a better estimation of the porosity of coir fibres.

Figure 2.11 Image analysis to measure the porous area of the fibre cross-section using the software Leica QWin (Tran et al, 2015).

In summary, XRCT offers a good tool to study the porosity and generally the internal structure of bio-aggregates. Based on the above discussion, the bio-aggregate porosity will be better estimated by SEM image analysis in a small level of scale (< 1µm). XRCT will give a better results on the porosity of bio-aggregate above 1-3 µm. Combining these two methods will improve accuracy of pore-size distributions and porosity for bio-aggregates.

2.1.1.4 Nuclear Magnetic Resonance

NMR Spectroscopy has been used commercially in a variety of disciplines, ranging from oil exploration to food technology, to examine the moisture content of materials. The hydrogen atoms within the material, which is exposed to a large magnetic field, are excited by a pulse of radio waves, and subsequently relax back to their normal state releasing a characteristic signal. Measurement of the relaxation signal (T_1) allows the number of hydrogen atoms present and, with appropriate calibration for the material, the absolute water content to be evaluated. An additional feature of NMR is its ability to measure the amount of moisture in different physical states (i.e. chemically bound, physically bound and free liquid). Because the technique is tuned to excite the hydrogen nucleus, water molecules
are particularly responsive to the technique, however, care is needed where polymer-based or organic materials are present as their hydrogen content may confuse results. The technique requires experience and sophisticated analysis to fulfil its potential performance (Phillipson et al., 2007).

Faure et al. (2012) investigated water transfer in hemp-lime using NMR. The relaxation time T_1 is known to be a probe of water mobility which depends on the water interaction with its environmental conditions: ions or paramagnetic components, media rigidity (for example due to polymer presence), pore size, etc. In complex media such as civil engineering materials, water present in the sample may experience different local environment: it may be confined in pores of different sizes, or may be physically or chemically trapped in specific microstructures. T_1 decreases with the pore size, and other more subtle relationships may be found between the porous structure and relaxation times of water inside. This work focused on the development of pore structure over time due to the hydration of the binder, and it is evident that the technique is effective as a method of measuring pore size distribution in bio-aggregate composites. Figure 2.12 shows the distribution of water in water-hemp mixtures with differing water to hemp mass ratios, and clearly shows the typical bi-modal pore size distribution that is known to occur in hemp shiv.

![NMR signal](image)

Figure 2.12 T_1 distribution for water-hemp mixtures after 18 h for different water to hemp mass ratios: (from bottom to top) 0.62, 0.86, 1.12, 1.37, 1.63, 1.89, 2.14, and 2.4 (Faure et al., 2012)
2.1.2 Other methods:

2.1.2.1 Mercury Intrusion Porosimetry

Mercury intrusion porosimetry (MIP) is a powerful technique which can be used to explore the structure of pores larger than about 3.5 nm. In MIP, the volume of liquid metal that penetrates a solid is measured as a function of applied pressure. Subsequent analysis is based on the capillary law governing liquid penetration into small pores. Since mercury is a non-wetting liquid for most materials (its contact angle is greater than 90°), an externally imposed pressure is required to force it into the pores of a porous solid.

The smaller the pore size, the greater the pressure required to force the mercury into the pore. In general, penetration data are analyzed using the Washburn equation (Washburn, 1921). This relates the radius \(r \) of pores (assumed to be cylindrical) to the imposed pressure \(P \) as follows:

\[
P = -\frac{2\gamma \cos \theta}{r}
\]

where:

- \(\gamma \) = Interfacial energy (surface tension) of mercury
- \(\theta \) = contact angle of mercury with the material

Common values of \(\gamma \) and \(\theta \) (which assume interfaces involving a gas or vapour phase) are 485 mJ/m\(^2\) and 140°. Whilst pores are rarely cylindrical, the Washburn equation is generally accepted as a practical method of analysing what are normally very complex pore systems (Lawrence, 2007).

Boitryk and Pawluczuk (2014) have tested bio-composites (reed and sawdust bound with cement) using MIP in order to establish the impact of superplasticiser. Collet et al (2008) tested hemp-lime renders and mortars using MIP. This study found that the pore size distributions of the composites were monomodal, with frequency peaks at about 0.9 µm. The vast majority of the pores seen were in the meso- and macro-pore range (respectively 96% and 94% of the intruded mercury volume). They also identified a significant hysteresis between the intrusion and extrusion curves. This was explained in part by the ‘ink-bottle’ effect where mercury became trapped in pores with smaller pore openings, and partly by a difference in the contact angle between intrusion and extrusion. In some cases hysteresis can be completely eliminated by modifying the extrusion contact angle (León, 1998). It should be noted that a third cause could also be considered, associated with the crushing of pore walls. This would result in very different extrusion curves because the porosity would have been changed by the high pressures involved in intrusion.
Figure 2.13 shows pore size distributions obtained by Collet (2008) and Boitryk (2014) which differ significantly. Part of the difference is likely to be due to the different binders used, and potentially also due to differences in hemp shiv itself, but it is evident that a more systematic study of the use of MIP to characterise the pore size distribution of bio-aggregates is required.

There do not appear to be any MIP studies of bio-aggregate on its own.

2.1.2.2 Thermoporometry

A small crystal of a liquid melts at a lower temperature than the bulk liquid, as given by the Gibbs-Thomson equation. (Jackson & McKenna, 1990) Thus if a liquid is imbibed into a porous material, and frozen, the melting temperature will provide information on the pore-size distribution. The detection of the melting can be done by sensing the transient heat flows during phase-changes using differential scanning calorimetry.

For an isolated spherical solid particle of diameter \(x \) in its own liquid, the Gibbs-Thomson Equation for the structural melting point depression can be written:

\[
\Delta T_m(x) = T_{mB} - T_m(x) = T_{mB} \frac{4\sigma_{sl}}{H_f \rho_s x}
\]

where:
- \(T_{mB} \) = Bulk Melting temperature
- \(\sigma_{sl} \) = solid-liquid interface energy (per unit area)
- \(H_f \) = bulk enthalpy of fusion (per gram of material)
- \(\rho_s \) = density of solid
Very similar equations may be applied to the growth and melting of crystals in the confined geometry of porous systems. However the geometry term for the crystal-liquid interface may be different, and there may be additional surface energy terms to consider, which can be written as a wetting angle term $\cos \phi$. The angle is usually considered to be near 180°. In cylindrical pores there is some evidence that the freezing interface may be spherical, while the melting interface may be cylindrical, based on preliminary measurements for the measured ratio for $\Delta T_f/\Delta T_m$ in cylindrical pores (Webber, 2010).

Thus for a spherical interface between a non-wetting crystal and its own liquid, in an infinite cylindrical pore of diameter x, the structural melting point depression is given by:

$$\Delta T_m(x) = T_{mB} - T_m(x) = - T_{mB} \frac{4 \sigma_s \cos \phi}{H_f \rho_s x}$$

There has not been any published work which uses thermoporometry to characterize the pore structure of bio-based aggregates, although theoretically it should produce more representative results than MIP because it is conducted at atmospheric pressure which makes it less likely to crush pore walls during the characterization.

Landry (2005) has shown that Thermoporometry can be conducted using organic liquids as a probe, and cyclohexane is suggested to be a convenient organic liquid because its fusion temperature is 279.7K (6.6°C), very close to water. Cyclohexane is hydrophobic and non-polar which would present a different interaction with the surface of the bio-aggregate that water. As a probe liquid, cyclohexane provides a complete baseline resolution at a 0.06K/min scanning rate for all pore sizes. Another advantage to using hydrocarbons for thermoporometry characterisation of large pore materials is the larger temperature depression it offers compared with water.

2.1.2.3 Physisorption

The term “physical adsorption” or “physisorption” refers to the phenomenon of gas molecules adhering to a surface without the formation of a chemical bond at a pressure less than the vapor pressure. The attractions between the molecules being adsorbed and the surface are relatively weak and definitely not covalent or ionic. Some adsorption process is accompanied by absorption, which is the penetration of the fluid into the solid phase. It is sometimes difficult to distinguish between adsorption and absorption. This interaction is generally the result of a van der Waals interaction. On the other hand, chemical adsorption, called chemisorption, occurs when a molecule or atom is adsorbed to a surface by forming a chemical bond. Chemisorption is limited to monolayer coverage. (Sing, 1985, Forrest, 2012, Condon, 2006, Rouquerol, 2014). Physical adsorption takes place on all surfaces and can forms multiple layers under proper conditions. Chemisorption, how-
ever, is highly selective and only proceeds as long as the adsorptive can make direct contact with the surface. It is therefore a single-layer process. The enthalpy of chemisorption is often much greater than that of physical adsorption. The physical sorption energy usually not exceed 80 kJ/mole, with typical energies being considerably less due to relatively weak Van der Wall’s forces. Physically adsorbed molecules may diffuse along the surface of the adsorbent and typically are not bound to a specific location on the surface. Being only weakly bound, physical adsorption is easily reversed. A chemical bond involves sharing of electrons between the adsorbate and the adsorbent, with typical energies up to about 600 kJ/mole for C-N bonds and 800 kJ/mole for chemical bonds. Due to the bond strength, chemical adsorption is difficult to reverse (Webb, 2003, Rouquerol, 2014).

For physisorption, the principle measurement performed as an adsorption experiment is the measurement of the adsorption isotherm. The adsorption isotherm is the measurement of amount adsorbed versus adsorptive pressure at constant temperature. The slightest change in the shape of the plotted isotherm in indicative of a particular surface feature. Analyses of physical adsorption isotherm data reveal the total surface area, mesopore and micropore volume and area, total pore volume, the distribution of pore volume and area by pore size, and surface energy distribution. This is the easiest measurement to make. Another type of measurement is calorimetry. There are various forms of calorimetry but the most accurate methods are very difficult to perform and only a few examples are available in the literature. There are principal methods to measure the adsorption isotherm, volumetric and gravimetric. In both methods the adsorbent is held at a constant temperature, usually near or at the boiling point of the adsorptive. The amount adsorbed is measure in the case of the volumetric system by measuring the pressure change and comparing this to the expected pressure change if the adsorbent were absent. In the case of the gravimetric measurement the amount adsorbed is indicated by the mass gain. The most common measurement of the isotherm is volumetric method. This method has the advantage that it is simplest and relatively inexpensive. It has the disadvantage of a greater uncertainty in the results. A low cost alternative to the volumetric is the flow or carrier gas system. The disadvantage of this method is that the results are very uncertain and normally does not yield the isotherm. Generally, the gravimetric method is more accurate and precise, however such instrumentation is more expensive and requires a little more skill and patience to operation.

When a polar molecule is adsorbed on an ionic or polar surface various types of specific interactions may contribute to the adsorption energy. A useful general expression for the adsorption energy, E_0, at very low surface coverage was first proposed by Barrer (1966) in the form of the sum:

$$E_0 = E_D + E_R + E_P + E_{F\mu} + E_{FQ}$$

in which E_D and E_R represent the non-specific dispersion and repulsion contributions and the terms E_P, $E_{F\mu}$ and E_{FQ} represent, respectively, the three types of
specific contributions: the polarization, field-dipole and field gradient-quadrupole energies. The adsorbent-adsorbate interactions must be studied at very low surface coverage. It is only under these conditions that we can eliminate, or at least minimize, the adsorbate-adsorbate interactions. Calorimetry measures the temperature change as the adsorption occurs. This along with a heat capacity measurements of the resultant adsorbate-adsorbent combination yields the heat of adsorption as a function of pressure. Calorimetry is not widely used since accurate calorimetry is extremely difficult to perform and requires a great amount of time and effort (Condon, 2006).

Since physisorption is a complex process involving various interactions, the majority of these isotherms may conveniently be grouped into six classes in the IUPAC classification (Figure 2.14).

- I: Microporous materials (e.g. Zeolite and Activated carbon)
- II: Non porous materials (e.g. Nonporous Alumina and Silica)
- III: Non porous materials and materials which have the weak interaction between the adsorbate and adsorbent (e.g. Graphite/water)
- IV: Mesoporous materials (e.g. Mesoporous Alumina and Silica)
- V: Porous materials and materials that have the weak interaction between the adsorbate and adsorbent (e.g. Activated carbon/water)
- VI: Homogeneous surface materials (e.g. Graphite/Kr and NaCl/Kr)

![Figure 2.14 The six main types of gas physisorption isotherms, according to the IUPAC classification (Sing, et al, 1985)](image)}
Several models have been developed to aid in the use of experimental data at the gas-solid interface. Each of these relies upon different assumptions that may affect the model’s validity for a given surface. The Langmuir theory is used for ideal localized monolayer adsorption. The most widely used is the Brunauer, Emmett and Teller (BET) and its various modifications including the Brunauer, Deming, Deming and Teller (BDDT). It is widely used for multilayer adsorption. The mechanisms involved in the BET model will be mainly dealt with next section. The calculation of the pore size distribution is performed by various methods based on the use of the Kelvin equation. Another widely used isotherm, especially for porous material, is the Dubinin-Radushkevich (DR) isotherm. Gibbs adsorption equation is to describe the adsorbed phase on available surface or in micropores. There are several other methods to describe the porosity, such as Barrett Joyner Halenda method (BJH), Density functional theory method (DFT) and Alpha S method (αs) and so on (Sing, 1985, Brunauer, 1938, Condon, 2006).

2.1.2.4 Nitrogen Adsorption and BET analysis

Of all the many gases and vapours, which are readily available and could be used as adsorptive, nitrogen has remained universally pre-eminent. Nitrogen gas is generally employed as the probe molecule and is exposed to a solid under investigation at liquid nitrogen conditions (i.e. 77K). The surface area of the solid is evaluated from the measured monolayer capacity and knowledge of the cross-sectional area of the molecule being used as a probe. For the case of nitrogen, the cross-sectional area is taken as 16.2 Å²/molecule. In the early 1930s, it was realized that multilayer adsorption of nitrogen can occur at liquid nitrogen temperature (77 K). Emmet and Brunauer came to the empirical conclusion that the beginning of the middle almost linear section of a Type II isotherm (Point B in Figure 2.15) was the point most likely to correspond to monolayer completion. Their work prepared the way for the development of the BET theory in 1938. From the amount adsorbed at Point B, Emmett and Brunauer went on to calculate the surface area by assuming the monolayer to be molecularly close packed (Emmett, 1937). To use of nitrogen adsorption for pore size analysis dates from the late 1940s. It is based on the application of the Kelvin equation, with a correction for the multilayer thickness on the pore walls. One of the computational method devised by Barrett, Joyner and Halenda (BJH) in 1951 remains the most popular way of deriving the pore size distribution from an appropriate nitrogen isotherm (Sing et al, 2001).
Figure 2.15 Characteristic points on a Type II adsorption isotherm (Emmett, 1937)

Generally, two stages are involved in the evaluation of the surface area from physisorption isotherm data by the BET method. First, it is to construct the BET plot and to derive the value of the monolayer capacity, \(n_m \). The second stage is the calculation of the specific surface area. The BET equation is conveniently expressed in the linear form:

\[
\frac{p}{p^0} = \frac{1}{n_m C} + \frac{C - 1}{n_m C} \left(\frac{p}{p^0} \right)
\]

Where \(n \) (=\(n/a/m^2 \)) is the amount adsorbed at a relative pressure \(p/p^0 \) and \(n_m (=n/m^2) \) is the monolayer capacity. In the BET theory, the parameter \(C \) is exponentially related to \(E_1 \) (the first-layer adsorption energy). A reliable analysis of the BET plot requires a certain number of experimental points: 10 is, we consider, a minimum in the exploratory range of relative pressures from 0.01 to 0.30. The location and extent of the linear region of a BET plot are dependent on the system and operational temperature, and if the isotherm is Type II or Type IV, the BET plot should always be located around the knee of the isotherm. The relative pressure corresponding to monolayer completion is inversely dependent on the \(C \) value, for example, if \(C > 350 \), the BET monolayer capacity is located at \(p/p^0 < 0.05 \) and if \(C < 50 \), \(n_m \) is at \(p/p^0 > 0.18 \). Point B cannot be identified as a single point on the isotherm. The selection of the appropriate pressure range often entails some degree of qualitative judgement and several narrow, adjacent, pressure ranges may seem to offer possible ranges of linearity. To overcoming this uncertainty, the following simple criteria have been proposed (Rouquerol et al, 2014): the range of
linearity is restricted to a limited part of the isotherm – usually not outside the p/p₀ range of 0.05-0.30. It is strongly recommended that in reporting as (BET) values, the conditions of outgassing, the temperature of the measurements, the range of linearity of the BET plot, the values of p₀, nₚ, a₀ and C should all be stated. Sing et al (2001) pointed that, under favourable conditions, a t-plot can provide a means of assessing the micropore volume and the external area. The αₛ method can be used to check the validity of the BET area and also to identify the adsorption and pore filling mechanism. In the absence of other complicating factors (e.g. microporosity or highly active sites), the BET plot of a type II or type IV isotherm does appear to provide a fairly reliable assessment. It is not appropriate to apply the BET method to type III, type V or type VI isotherms. For a porous materials, or one that has an unsmooth surface, the BET surface area is generally appreciably larger than its non-porous analog. BET experiments are typically conducted to a relative pressure, P/P₀, of approximately 0.3 at 77 K, where P₀ is the saturation pressure. At relative pressures above the point at which a N₂ monolayer has formed on the solid, capillary condensation occurs within the pore structure of the material such that the smaller pores are filled more easily and consecutively larger pores are filled as pressure is increased. When the saturation point is approached, i.e., P/P₀ is approximately 1.0, the internal pore structure of the material contains condensed (liquid) nitrogen. The total pore volume can be calculated by assuming that the density of liquid nitrogen in the pores is the same as that bulk liquid nitrogen. Nitrogen sorption is suitable to characterize materials with pores with the range of ~2nm to below ~150nm. For materials containing larger pores, mercury porosimetry is the preferred experimental technique and spans the pore range from 3.5 nm to 2000 nm. Sample preparation prior sorption analysis is a key aspect of material characterization. Caution must be used when heating some common samples because melting, dehydration, sintering, and decomposition are processes that can drastically alter the surface properties of the sample.

Collet et al (2008) studied the porosity and pore structure of hemp wool, lime hemp render and hemp mortar by using BET methods with water vapour as probe agent. The results showed that the isotherms obtained are S-shaped and can be classified as type II according to IUPAC classification. The specific surface area for hemp mortar and hemp wool were 80.82 m²/g and 88.77 m²/g, respectively. Collet et al (2011) also showed that the isotherms of two kinds of hemp wool are classified as type II and the specific surface area is 111 m²/g for the first hemp wool. Bismarck et al (2002) showed all natural fibres have very small specific surface areas about 0.5 m²/g, which is just slightly bigger than the calculated geometric surface area (Aₛ,geo 0.38 m²/g at a fibre diameter d₀~14 µm (compare SEM-micrographs) and a density of flax fibres of ρ = 1.47 g/cm³). Yin et al (2015) compared the changes in micropore and mesopores in the wood cell walls of sapwood and heartwood. The results showed that specific surface area of sapwood ranged from 1.255 m²/g to 2.08 m²/g, but specific surface area of heartwood ranged from 0.078 m²/g to 1.058 m²/g. Brewer et al (2014) that BET surface area of the slow
pyrolysis biochars increased exponentially with pyrolysis temperature, from \(<1\) m\(^2\)/g to \(317 \pm 16\) m\(^2\)/g for the wood biochars and from \(<1\) m\(^2\)/g to \(387 \pm 6\) m\(^2\)/g for the grass biochars. BET surface area was low, \(<10\) m\(^2\)/g, for all of the intermediate pyrolysis biochars. Rachini et al (2012) showed the specific surface areas of natural, ethanol/water extracted and silane treated (at different concentrations) hemp fibres were about 0.7 m\(^2\)/g. Before BET characterization, the fibres (2 cm) were grounded onto very small pieces (500 nm) using a wood grinder.

2.1.2.5 Dynamic Vapour Sorption

Dynamic Vapour Sorption (DVS) is a gravimetric technique that measures the speed and amount of a solvent that is absorbed by a sample. It is an automated alternative to traditional sorption techniques. Within building materials, the technique is primarily used to measure the sorption of water vapour, although using other solvents can provide some useful insights into pore structure and surface area.

Traditional water vapour sorption isotherms are conducted gravimetrically using saturated salt solutions which generate known relative humidity. For each humidity value, a sorption isotherm indicates the corresponding water content value at a given, constant temperature. If the composition or quality of the material changes, then its sorption behaviour also changes. Because of the complexity of sorption processes, the isotherms cannot be determined by calculation, but must be recorded experimentally for each product.

The main application of DVS is to measure water sorption isotherms. In general, a vapor sorption isotherm shows the equilibrium amount of vapor sorbed as a function of steady state relative vapor pressure at a constant temperature. For water sorption isotherms, water relative vapor pressure is more commonly expressed as relative humidity. In a DVS experiment this is accomplished by exposing a sample to a series of step changes in relative humidity and monitoring the mass change as a function of time. The sample mass must be allowed to reach gravimetric equilibrium at each step change in humidity before progressing to the next humidity level. Then the equilibrium mass values at each relative humidity step are used to generate the isotherm. Isotherms are typically divided into two components: sorption for increasing humidity steps and desorption for decreasing humidity steps. Sorption can be further divided into adsorption (sorbate located on the surface) and absorption (sorbate penetrates the bulk). Figure 2.16 shows a typical DVS reference plot and isotherm for hemp-lime using water vapour. The chapter on hygric properties discusses sorption isotherms in detail and the extent to which they have been used with bio-aggregates.
Figure 2.16 Typical DVS reference plot (up) and sorption isotherm (down) for hemp-lime (author)

Figure 2.17 shows DVS data for hemp shiv using cyclohexane. This test allows an insight to be gained into the BET surface area and sorption kinetics as well as into porosity and diffusion. The cyclohexane sorption study (Figure 2.17 up) on the sample indicates that there is a very small interaction between cyclohexane vapour and the hemp sample. The sorption isotherm (Figure 2.17 down) shows the cyclohexane sorption capacity for hemp at 95% P/P₀ to be less than 1%
by mass. The BET surface areas can be calculated from the BET model with cyclohexane as probe and give a specific surface area of 2.463 m2/g with a regression (R2) of linear fit of 99.846%. **Erreur ! Source du renvoi introuvable.** shows that for the hemp shiv sample, for steps from 60% P/P$_0$ to 90% P/P$_0$, there is a steady decrease in the diffusion constant almost linearly with increasing partial vapour pressures of cyclohexane. Although the hemp sample shows a straightforward sorption/desorption mechanism (Figure 2.17 up), the isotherm (Figure 2.17 down) shows a distinct Type IV mechanism with a characteristic hysteresis loop which can be associated with a mesoporous structure.

![Figure 2.17 DVS plots for hemp shiv using cyclohexane. Reference plot (up) and sorption isotherm (down) (author)](image)

Note: The DVS plots show the change in mass over time for hemp shiv samples at different partial pressures of cyclohexane. The isotherm (down) displays a Type IV mechanism with hysteresis, indicative of a mesoporous structure.
Table 2.2 Diffusion coefficients for hemp shiv sample

<table>
<thead>
<tr>
<th>Hemp shiv</th>
<th>Sample</th>
<th>%P/P*</th>
<th>Temperature (ºC)</th>
<th>Diffusion Coefficient (cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemp</td>
<td>60-70</td>
<td>25.0</td>
<td>2.57E-04</td>
<td></td>
</tr>
<tr>
<td>Hemp</td>
<td>70-80</td>
<td>25.0</td>
<td>1.65E-04</td>
<td></td>
</tr>
<tr>
<td>Hemp</td>
<td>80-90</td>
<td>25.0</td>
<td>1.13E-04</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2.6 Pycnometry and Envelope Density Analysis

Pycnometry is used for measuring the density and the pore volume based on Boyle-Mariotte’s law of volume-pressure relationships. Details of the construction of simple gas pycnometers were published more than fifty years ago. There are three kinds of gas pycnometers reported in literature: ‘constant-volume’, ‘variable volume’ and ‘comparative’ (Kummer, 1945, Tamari, 2004). The ‘constant-volume’ gas pycnometer was considered because of its widespread use. This technique uses the gas displacement method to measure volume accurately. As shown in Figure 2.18, inert gases, such as helium or nitrogen, are used as the displacement medium. The sample is sealed in the instrument compartment of known volume, the appropriate inert gas is admitted, and then expanded into another precision internal volume. The pressures observed upon filling the sample chamber and then discharging it into a second empty chamber allow computation of the sample solid phase volume. Helium molecules rapidly fill pores as small as one angstrom in diameter; only the solid phase of the sample displaces the gas. Dividing this volume into the sample weight gives the gas displacement density.

This method has been widely used to determine the volume and the density of bio-aggregates materials. Three fundamental hypotheses are made:

- (1) the gas inside the pycnometer behaves ideally (i.e. its compressibility is negligible and it does not adsorb on solids),
- (2) the sample and the pycnometer’s components are rigid, and
- (3) the pycnometer is gas-tight and the expanding gas quickly reaches a static equilibrium.
Figure 2.18 Diagram of a constant volume gas pycnometer. The sample-chamber and the tank, initially filled with gas at two different pressures, are connected by open-ing vale ‘z’. The final gas pressure indicated of how much of the sample-chamber volume is occupied by the solid particles (Tamari, 2004).

The method consists of placing a dry core (or crushed rock) of known bulk volume (\(V_{\text{bulk}}\), as determined by methods described above) in a container of known volume (\(V_a\)). This volume is connected with another container with a known volume (\(V_b\)) that is evacuated. He gas is introduced into \(V_a\) and the pressure (\(P_1\)) set to an arbitrary value typically around 100 psi. This He gas is then released into \(V_b\) and allowed to equilibrate throughout both chambers. The helium gas then penetrates into the pores of the sample. During this process the pressure will decrease to a new stable level (\(P_2\)). Using the ideal gas law, the volume of the pores can be calculated from

\[
V_p = V_{\text{bulk}} - V_a - V_b \left(\frac{P_2}{P_2 - P_1} \right)
\]

It must consider a range of possible values for the filling factor (\(0 < \phi < 1\)). The porosity of granular media lies between 25 and 50% in general, which would give the theoretical range 0.50 < \(\phi\) < 0.75. However, in practice it would be difficult to fill the pycnometer’s sample-chamber to the brim. We considered that 5–25% of the sample-chamber volume (including the tube at the sample-chamber side) might be free of solid particles. The range 0.40 < \(\phi\) < 0.70 was thus thought
to be realistic for a sample-chamber filled with as many solid particles as practical (Hillel, 1980, Tamari, 2004, Anovitz, 2015). This method is recognized as one of the most reliable techniques for obtaining true, absolute, skeletal, and apparent volume and density. This technique is non-destructive as it uses the gas displacement method to measure volume. Inert gases, such as helium or nitrogen, are used as the displacement medium. Density calculations using the gas displacement method are much more accurate and reproducible than the traditional Archimedes water displacement method (Zauer, 2013).

Mwaikambo et al (2001) studied the porosity of plant fibres by helium pycnometry method. The results showed that the porosity of hemp fibres is 2.46% and the porosity of Sisal and Jute are similar (10.85% and 11.36%, respectively). Zauer et al (2013) studied porosity of wood by pycnometry method using helium and nitrogen as a displace gas. The results in Erreur ! Source du renvoi introuvable. showed how this can lead to misinterpretation of the cell wall density or porosity of wood determined by gas pycnometry. The results clearly showed that the sample geometry and the dimensions significantly affect the calculated values. This is primarily due to the inaccessibility of some uncut wood cell lumen. Thus, the determined cell wall volume is falsely too high, and consequently, the calculated cell wall density or porosity falsely too low.

Table 2.3 Average cell wall densities and porosities of oven dry native spruce, maple and ash in dependence of sample dimension or geometry as well as displacement gas (helium and nitrogen) (Zauer, 2013)

<table>
<thead>
<tr>
<th>Wood species</th>
<th>Thickness [mm]</th>
<th>Thickness direction</th>
<th>Helium</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell-wall density [g cm⁻³]</td>
<td>Porosity [%]</td>
</tr>
<tr>
<td>Spruce</td>
<td>2</td>
<td>Long</td>
<td>1.47</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Long</td>
<td>1.38</td>
<td>69.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Tang</td>
<td>1.31</td>
<td>67.4</td>
</tr>
<tr>
<td>Maple</td>
<td>2</td>
<td>Long</td>
<td>1.51</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Long</td>
<td>1.43</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Tang</td>
<td>1.35</td>
<td>51.3</td>
</tr>
<tr>
<td>Ash</td>
<td>2</td>
<td>Long</td>
<td>1.36</td>
<td>52.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Long</td>
<td>1.32</td>
<td>50.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Tang</td>
<td>1.33</td>
<td>51.1</td>
</tr>
</tbody>
</table>

Donato (2012) studied the porosity of waterlogged woods by using helium pycnometry. The porosity of waterlogged wood ranged between 83.4% and 90.6%. The author believed the porosity values calculated using the helium pycnometer are reliable because helium may easily penetrate even in the smallest cav-
ities of the cell wall. Eventual differences between the porosity values obtained in wet and dry conditions might be ascribed to different structure assumed by the cell wall and different water and helium penetration, which is larger for the inert gas. Gershon (2012) studied the porosity of light wood and dark using pycnometry method. This results in a volume fraction of porosity of 0.82 for the dark and 0.80 for the light.

2.2 Conclusion

There are a large number of methods for determining porosity. However, the porosity of bio-aggregates is difficult to quantify due to the complex pore size and shape. For example, the size of pore in the bio-aggregate are between a few nanometers to several millimeters. There is really no one method that can characterize pores in this enormous range in scale. In this chapter, the theory, advantage and disadvantage of several common methods using for determination of porosity have been briefly described and summarised. In essence, the different techniques, each based on different inherent assumptions, have their own capabilities and advantages. A combination of several methods is most likely to give a good understanding of the size, shape and structure of pore in the bio-aggregates materials.

The study of bio-aggregates is still in its infancy and their unique characteristics demand the development of novel methods or the adaptation of existing methods in order to satisfactorily characterise their microstructure. There is a need for robust and comprehensive studies to be made into these materials in order that their performance can be satisfactorily modelled using Building Physics models to confidently predict the performance of dwellings constructed from these materials.

References

Kummer, F.A. and Cooper, A.W., 1945. Soil porosity determination with the air pycnometer as compared with the tension method. Agric. Eng. 26: 21-23.

Zollfrank, C., Sieber, H. Microstructure and phase morphology of wood derived biomorphic SiSiC-ceramics. Journal of the European Ceramic Society 24 pp495-506
Chapter 3. Water absorption of plant aggregate

Sofiane AMZIANE¹, Vincent NOZAHIC¹ and Mohammed SONEBI²

¹Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr
²School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, UK

3.0 Introduction

In “agro-concretes”, highly-porous plant-based particles are used, and are responsible for massive water absorption. It is often reported (Nguyen et al., 2010, Arnaud & Gourlay, 2012) that this hydrophilic nature of the plant materials leads to competition with hydraulic binders, which require at least a certain amount of water in order to form hydrate products and cohesion. Such competition appears to be the reason for the crumbling of hydraulic binders (Cerezo, 2005). Binders with high carbonation potential — in particular, aerated-lime-based binders — are often employed to counter this problem, at least on the surface of the agro-concrete (Elfordy et al., 2008; Mounanga et al., 2009; Nguyen, 2009a).

Recent studies performed on self-compacting concretes could help better understand the amount of water that needs to be added to the particulates in order to limit competition between the absorption of the plant material and the hydration of the binder (Jacek et al. 2012, Diederich et al., 2010). Indeed, the pre-wetting methods used up until now to provide the water necessary to saturate the granulates and the binder cannot really justify the dosage of water to be used (Cerezo, 2005; Nguyen, 2009a). In addition, the fabrication of the agroconcrete also comes into play, as the method of compaction is used, partially crushing the plant material and thereby releasing some of the mix water (Nguyen, 2009a).

3.1 Wetting of porous, heterogeneous surfaces

Whether in the binder, in the lignocellulosic particles or at the interface between those two entities, water transfer by means of capillary phenomena and diffusion in the plant structure play a very important role. However, that transfer can only take place after the wetting of the plant surface by the interstitial water contained in the binder.
A surface’s *wettability*, where the main characteristic is its surface tension γ_S, is a crucially-important concept when the adhesion of a liquid (which has a surface tension γ_L) to that surface is needed to be calculated. In the particular case of a cement paste applied to a plant particle, the process of adhesion mainly occurs between the interstitial liquid and the surface of the plant.

Wettability, which is necessary for any process of adhesion, can be examined on two different scales:

- **The physical intermolecular bonds**: There are two types of bonds created by the wetting of a plant surface with an aqueous solution: hydrogen bonds (which are OH bonds) and van der Waals bonds (electrostatic forces exerted between the particles).
- **The physical measurements (contact angle and surface tension)**: these measured values physically describe the expression of the bonds within each of the media (surface tension for the liquid and the solid) and at equilibrium between two (surface tensions of the solid and liquid γ_{SL}) or three media (Young–Dupré law defining the contact angle).

3.1.1 Surface tension and interface tension

A molecule of water or of any other liquid, when it is situated within that liquid, is subject to van der Waals-type forces of cohesion, exerted isotropically upon it. On the other hand, when the molecule is at the boundary between the air and the liquid, it is in a slightly higher state of energy, which creates a stress of tension (expressed in N.m$^{-1}$ or J.m$^{-2}$). This interfacial tension between a liquid and a gas is called the *surface tension* γ_{LG}. The surface tension of water in air at 20°C, for example, is 72.7×10^{-3} N.m$^{-1}$. The surface of a solid in contact with a gas is an instability of the same type. It is known as the surface energy of *surface tension* γ_{SG} of the solid.

When a solid and a liquid brought into contact with one another, where each of them has a surface energy with the air or any other surrounding gas, a new interfacial equilibrium is created. That equilibrium is an energy balance between the liquid–gas surface tension γ_{LG}, the solid–gas surface tension γ_{SG} and the *interfacial tension* γ_{SL}. An adhesion energy known as the Dupré energy, E_{DUPRE} (expressed in N.m$^{-1}$ or J.m$^{-2}$), is then defined:

$$ E_{DUPRE} = \gamma_{LG} + \gamma_{SG} - \gamma_{SL} \quad [\text{Eq. 3.1}] $$
3.1.1.1 Contact angle and wettability

General laws

When a drop of liquid is placed on a smooth, solid surface, it undergoes spreading to a greater or lesser degree, which is the resultant of the surface energies. This wettability of the surface can be defined by the so-called spreading coefficient \(S \) (de Gennes et al., 2004):

\[
S = \gamma_{SG} - \gamma_{SL} - \gamma_{LG}
\]

[Eq. 3.2]

When the value of the coefficient \(S \) is greater than 0, the total wetting of the surface can be observed. On the other hand, if \(S \) is negative, a partial wetting can be seen, leading to the formation of a drop sitting on the solid surface. As a general rule, the lower the liquid’s surface tension, the greater the spreading. As water has a high surface tension, the wetting of a solid by water is generally incomplete.

In the case of partial wetting, the Young–Dupré law gives the expression of the static contact angle \(\theta \) of a liquid drop placed on a solid substrate, at equilibrium with the vapour phase:

\[
\cos \theta = \frac{\gamma_{SG} - \gamma_{SL}}{\gamma_{LG}}
\]

[Eq. 3.3]

This relation is obtained by projection of the vectors formed by the interfacial tensions taking the triple point (Figure 3.1 b) as the origin. The following situations may be encountered:

- \(\theta > 90^\circ \): The liquid is said to be “non-wetting”. In the case of water, the solid is said to be hydrophobic (Figure 3.1.b);
- \(\theta < 90^\circ \): The liquid is said to be “wetting”. For water, the solid is said to be hydrophilic (Figure 3.1.Erreur ! Source du renvoi introuvable.a).
Figure 3.1 Diagrammatic representation of: a hydrophilic (a) and hydrophobic (b) smooth surface; a hydrophilic (c) and hydrophobic (d) rough surface; and a hydrophilic (e) and hydrophobic (f) porous surface (de Gennes et al., 2004)

Wetting of a heterogeneous and porous lignocellulosic plant surface

The surfaces representative of lignocellulosic particles exhibit numerous heterogeneities and significant roughness (Gardner et al., 1991). The wetting of wood and the factors influencing it have been widely studied over last decades (Gardner et al., 1991, Walinder, 2000; Bruyne, 2008). Generally speaking, the rougher its surface, the larger will be the contact angle formed by a hydrophobic material (de Gennes et al., 2004) (Figure 3.1 d). Similarly, the rougher the surface of a hydrophilic material such as wood, the more likely it is to be perfectly wettable (Figure 3.1 c).

3.2 Transfer phenomena in a porous medium

3.2.1 Liquid transfer in the laminar regime

3.2.1.1 Capillary transfer

When the aqueous mineral binder comes into contact with a hydrophilic porous support such as a lignocellulosic particle, its constituting water will wet the surface to which it is applied. Thus, as a function of the size of the pores in the
support, a capillary pressure of suction P_c is exerted on the free water in the binder. That pressure P_c [N.m$^{-2}$] is characterised by the \textit{Kelvin–Laplace law}:

$$P_c = \frac{-2\gamma_{LG} \cos \theta}{r} \tag{Eq. 3.4}$$

γ_{LG}: surface tension of the liquid (here the free water in the binder) on contact with the surrounding gas [N.m$^{-1}$]

θ: contact angle which the liquid forms with the porous surface

r: radius of the capillary pore in question [m]

Thus, the height by which the liquid rises in the capillary h_L defined by \textit{Jurin’s law} can be calculated:

$$h_L = \frac{-P_c}{\rho_L g} \tag{Eq. 3.5}$$

g: acceleration due to gravity [m.s$^{-2}$]

ρ_L: density of the liquid (here the free water in the binder) [kg.m$^{-3}$]

The dynamics of that ascension is defined by \textit{Washburn’s law}, which establishes a relation of proportionality between the capillary rise height h_L and the square root of the elapsed time. In particular, it is influenced by the fluid’s dynamic viscosity μ:

$$h_L^2 = \frac{r \gamma_{LG} \cos \theta}{2\mu} t \tag{Eq. 3.6}$$

μ: Dynamic viscosity [Pa.s]

3.2.1.2 Filtration transfer in a saturated porous medium

In the complex porous medium represented by agroconcretes, the pressure generated by capillary water absorption triggers a second phenomenon at the interface between the binder and the particles. Indeed, this absorption engenders a \textit{phenomenon known as filtration} of water through the large mineral granulates (> 50µm) which make up the binder. This aqueous movement in a saturated medium, which is predominant at the interface, may bring fine particles and ions suspended in the interstitial liquid into the plant structure. The filtration process is similar to the laminar flow of a viscous
interstitial fluid, undergoing friction as it passes over the granular skeleton of the binder. It is defined by Darcy’s law:

\[
\vec{u} = -\frac{k}{\mu}(P_c - \rho \vec{g})
\]

[Eq. 3.7]

\(\vec{u}\): Rate of filtration [m/s]
\(P_c\): Pressure [Pa]
\(\rho\): Density of the fluid [kg.m\(^{-3}\)]
\(\vec{g}\): Vector of acceleration due to gravity [m.s\(^{-2}\)]
\(k\): Intrinsic permeability [m\(^2\)]

3.2.2 Transfer of water vapour, particles or ions by diffusion

There are many different types of diffusion phenomena, which occur in numerous media. Agroconcretes, though, are a good example, because from the moment they are made, they are subject to numerous diffusive transfers, such as:

- the diffusion of liquid water into the plant cell walls from the moment of mixing to an age of several days;
- the diffusion of mineral particles from the binder and plant extractible materials into the mix water—particularly at the binder/plant interface;
- the diffusion of water in vapour form as the concrete dries, over the course of 1–3 months, but also during the use of the material.

All these phenomena have an influence on the short- and long-term adhesion between a lignocellulosic particle and a mineral binder. Thus, the diffusion of liquid water into plant cell walls may, potentially, destroy the hydrogen bonds established with the binder (Coutts and Kightly, 1984; Vick, 1999) and cause the plant tissues either to swell or to retract (Rowell, 2005).

3.2.2.1 Fick’s law

The numerous diffusive phenomena observed in nature are described by Fick’s laws, and can be characterised by their diffusion coefficient \(D\). These are very common transport phenomena, usually engendered by the creation of a gradient of chemical potential, hydric gradient or concentration gradient. Diffusion tends to even out that gradient, in accordance with Fick’s first law:
\[J = D \frac{\partial C}{\partial x} \]
\[\text{[Eq. 3.8]} \]

- **\(J \)**: Diffusive flow \([\text{mol.m}^{-2}.\text{s}^{-1}]\)
- **\(D \)**: Diffusion coefficient \([\text{m}^{2}.\text{s}^{-1}]\)
- **\(C \)**: Concentration of molecular species \([\text{mol.m}^{-3}]\)
- **\(x \)**: Spatial coordinate where diffusion is observed \([\text{m}]\)

Consider the end of a wood core sample, stabilise in an atmosphere of relative humidity \(RH_0 \), brought into contact with an atmosphere of \(HR_1 \) at a time \(t = 0 \). A gradient of humidity concentration \(C(x,t) \) is instantaneously created, with the wood tissues, giving rise to a diffusion front whose depth is \(d(t) \). The Brownian nature of the motion accounts for the progress of the diffusion front \(d \) proportional to the square root of elapsed time.

3.2.2.2 Einsteinian laws

The diffusion of the extractible materials and mineral particles in the interstitial liquid medium is responsible for problems with the setting of the mineral binder in contact with a plant particle. This migration of species is governed by the Einstein–Smoluchowski law (Einstein, 1905), which defines the Brownian motion of the particles.

\[D = \mu_0 K_B T \]
\[\text{[Eq. 3.9]} \]

- **\(D \)**: diffusion coefficient
- **\(K_B \)**: Boltzmann’s constant
- **\(T \)**: Temperature of the medium \([\text{K}]\)
- **\(\mu_0 \)**: Mobility of the particle, of the ion, etc.

An important special case of this law defines the diffusion of spherical particles in a medium with a low Reynolds number (laminar regime): this is the Stokes–Einstein law (Bentz et al., 2009):

\[D = \frac{K_B T}{6\pi \mu \rho} \]
\[\text{[Eq. 3.10]} \]

- **\(\mu \)**: Dynamic viscosity of the medium \([\text{Pa.s}]\)
- **\(\rho \)**: Radius of the particle diffusing in the medium \([\text{m}]\)
This relation is applicable in the capillaries of lignocellulosic stalks and the pores of cell walls, due to their very small diameter, meaning that their Reynolds number with water is less than 2400.

3.3 Analogy with adhesion of mortars to a porous support

A comparison can be drawn between the lignocellulosic wood granulates of “hempcrete” and a porous substrate (adherent) to which a mortar or flagging (adhesive) is applied. In order to illustrate this, firstly, there is need to set out the initial hypotheses that the granulate is inert and dimensionally stable. It is on these hypotheses that our discussion in this section is founded.

3.3.1 Capillary absorbency of a porous support

With regard to the establishment of a short-term physical bond, liquid transfers by means of the forces of capillarity are of great importance. Numerous studies have demonstrated the influence of the capillary absorption properties of the porous substrate on the development of bonding forces at the mortar/substrate interface (Groot & Larbi, 1999; Courard, 2000; Sugo et al., 2001).

Courard (2000) defines these capillary exchanges the absorbency of the substrate for the interstitial liquid in the mortar. If the absorbency is not high enough, the segregation of water on the surface of the substrate is observed which led to an increase in the final porosity of the interface.

Groot and Larbi (1999) describe the existence of an optimal capillary absorption coefficient with which maximal properties are achieved. They introduced the concept of the initial rate of absorption (IRA [kg.m$^{-2}$.min$^{-1}$]), which is defined as the capacity for capillary absorption per minute of the porous substrate placed in 3mm of water. The optimum IRA is defined as being that which delivers the highest bond strength between the porous support and the mortar (2). Given that the IRA depends upon the volume and pore size, the authors stress that it is not the only influential factor. This observation is also reported by Sugo et al. (2001).
Sugo et al. (2001) described the suction potential existing between a relatively dry porous substrate and a water-saturated mortar, which tends to balance out. The moment the materials are brought into contact, the substrate’s great suction potential causes the transport of the interstitial fluid from the mortar toward the substrate/mortar interface, and then into the actual pores of the substrate. In the view of those authors, over the course of these exchanges, gradients of humidity and of suction potential are established at the interface. As the binder becomes hydrated, the gradients evolve and may, depending on the size and interconnectivity of the porous structure, cause a backward flow of liquid from the support to the mortar, facilitated by large pores in the support (Groot & Larbi, 1999; Sugo et al., 2001). This backflow may give rise to a regain in hydration.

3.3.2 Transport of particles during filtration

Many authors reported the point that the processes of capillary absorption are responsible for the transport of fine particles in suspension from the mortar toward the surface and the porous structure of the substrate (Groot & Larbi, 1999; Couts & Kightly, 2000; Sugo et al., 2001). Sugo et al. (2001) introduced the concept of a cluster of fine particles from the binder, which stagnate along the brick/mortar interface, providing continuity between the two materials. Excessive transfer would, in their view, lead to the fragilisation of the area of mortar situated before the interface, notably rendering it more porous. Conversely, an insufficient quantity would create an interface which was fragile because of poor interpenetration.
Groot and Larbi (1999) reported that these movements of fine particles from the mortar and their densification at the mortar/support interface are likely to substantially alter the capillary pressures exerted by the mortar.

3.4 Overview of the processes of binder/wood adhesion

The complexity of wood as a material — one which is highly hydrophilic, porous, subject to swelling, anisotropic and heterogeneous — accounts for the multitude of phenomena needing to be taken into account in order to understand its interaction with an adhesive. The main interactions which take place in the specific case of the short-term adhesion of a mineral binder to wood are illustrated in Figure 3.3. The important points which must be borne in mind are as follows:

- Ensure optimal wetting which facilitates the interpenetration of the binder into the rough surface and the internal pores of the particles (vessels);
- Encourage as many physical bonds as possible, and interpenetration;
- Tend toward hydric transfers which are neither too great (lack of water for hydration) nor too slight (stagnation of water at the interface), by regulating the capillarity or filtration;
- Limit the filtration of fine particles from the binder toward the interface so as to prevent the buildup of particles;
- Limit the diffusion of particles from the binder into the interstitial liquid so as to limit concentration gradients;
- Limit the effects of the variations in the volume of the wood so as to ensure the interface is durable.

Figure 3.3 Illustration of the interactions between a hydrated mineral binder and a particle of wood with which it is brought into contact after wetting.
3.4.1.1 Hygroscopic behaviour when immersed

The hygroscopic behaviour of lignocellulosic plant materials is due, in no small part, to their hydrophilicity. Their complex architecture is marked by multi-scale porosity, designed to carry the fluids necessary for them to flourish (sap and water). Even after cutting and transformation, this porosity continues to play its part, and thus is the primary channel of water absorption in accordance with Laplace’s laws. This absorption takes place primarily in the conductive vessels or tracheids before the water propagates to the rest of the cells by diffusion across blockages and cell walls.

3.4.1.2 Water absorption/adsorption by immersion

Immersion of dispersed granulates

Measuring the gravimetric rate and the rate of water (W) absorption and adsorption is crucially important in formulating plant-based concretes. The plant particles are first steamed at 60°C for 48 hours. For each experiment, m₀ = 50g of dry plant material is used. The plant particles whose absorption we wish to measure are placed in a meshed recipient (a net, a grid, etc.) that allows the rapid evacuation of the soaking water and some of the interstitial water. The whole setup is then submerged for a period t = {1, 2, 5, 10, 30 minutes or 48 hours} before being removed and manually wrung. The exact procedure is illustrated by Figure 3.4. It is worth noting that this procedure does not allow the evacuation of part of the water which is present between the particles during wringing, or of the water adsorbed to the surface. Therefore, it is not possible to distinguish between absorbed water inside the capillaries and the water adsorbed to the surface. In addition, the manual wringing engenders a not-insignificant degree of uncertainty, mainly when the experiment is of short duration.

\[
W(t) = \frac{m(t) - m_0}{m_0} \times 100
\]

[Eq. 3.11]

For each given duration, the measurement is repeated three times — in total, 18 tests — giving an absorption curve W(t) for a given particulate material. The maximum absorption rate WSAT is defined at 48 hours.
1. Fill the recipient with water and drain it;
2. After taring the balance, weigh out $m_0 = 20\, \text{g}$ of dry granulated material (60°C, 48 hours) into the damp recipient;
3. Cover the recipient with a sieve and fill with water through the sieve;
4. After a given period of immersion, drain the recipient through the sieve, taking care to shake it and achieve maximum evacuation of the water;
5. Wipe the walls of the recipient and weigh it on the balance whose tare has not been altered ($m(t)$).

Figure 3.4 Step-by-step method for measuring the absorption/adsorption of plant particles by immersion

Immersion of chips of known dimensions

The water absorption of chips of dimensions $[2–3] \times 7 \times 60\, \text{mm}^3$, was analysed in parallel to that carried out on granulates. In each experiment, 5 chips are weighed and measured in the dry state before being submerged in water. Their mass is measured using a balance with precision of $\pm 0.1\, \text{mg}$ after 5 minutes, and after 4, 14, 24, 38 and 48 hours.

Tangential swelling of chips

The tangential swelling of immersed plant particles gives an idea of their capacity for deformation when brought into contact with water. Lignocellulosic plants, indeed, have the property of being able to integrate molecules of water or any other solvent into their very structure — notably due to the creation of hydrogen bonds (Rowell, 2005). It is for this reason that we must allow freshly-cut wood to dry (and therefore shrink) before using it. This measurement is perfectly complementary to the measurement of water absorption by immersion.

It should be noted that the natural character of plants and the limited dimensions of the transformed granulates (<1cm for the width of a particle) means that it cannot accurately determine this parameter. For each type of granulate, therefore, the measurement is performed on 10 particles taken from the stem, with dimen-
sions of [2–3]×7×60mm³. It is therefore too demanding in terms of equipment to monitor the swelling using automated systems. The callipers with a resolution of 0.01mm is selected. With untreated hemp and sunflower stalks, the measurements were taken at regular intervals up to 48 hours.

The tangential swelling is expressed simply:

\[G_T(t) = \frac{l(t) - l_0}{l_0} \times 100 \]

[Eq. 3.12]

Maximum swelling GT MAX is considered to have been achieved after 48 hours.

Wettability

The measurement of the contact angles seems to partly contradict the IRTF analyses presented in the previous section (Figure 3.5 a). Thus, the surface that proves most hydrophilic at the moment of deposition of the drop is the sunflower epidermis (76°), with the internal surface being initially quasi-hydrophobic (86°). This is attributable to a very rough surface on the internal face of the sunflower which, for a short period of time, keeps the drop spherical (Figure 3.5 c). For de-fibred hemp plant granulate, few differences are visible at the moment the drop is deposited: both faces are initially hydrophobic (θ > 90°).

The major differences in terms of the wetting behaviour can be seen after 60 seconds. The surfaces of the epidermal faces lead to a gradual and limited spreading of the deposited drop (Figure 3.5 b). The behaviour of the internal surfaces is very different because, very quickly, the drop undergoes significant spreading and is then absorbed into the structure of the particle (Figure 3.5 c). This observation can be linked to the internal faces’ high content of hemicellulose, which is extremely hydrophilic. In order for the plant to survive, the primary cell walls situated inside of the stem — particularly in the marrow — are composed of hydrophilic substances (cellulose, hemicellulose).
Figure 3.5 Contact angles formed by a drop of water on the epidermal internal faces of hemp and sunflower particles after 0, 30 and 60s (a). Observation of the characteristic spreading of the drop between 0 and 60 seconds on the epidermal face (b) and the internal face (c) of the sunflower.

3.4.1.3 Behaviour in terms of water adsorption/absorption

Adsorption/absorption and swelling of chips

Before truly turning our attention to the behaviour of the transformed granulates when immersed, preliminary information can be gleaned by examining a single chip. With this goal in mind, chips of hemp and sunflower (2–3×7×60mm3) were immersed in mains water ($\gamma_{LG} = 72$ mN.m$^{-1}$). The absorption/adsorption curves obtained (Fig. 6a) show three successive phases:
- Adsorption of water to the surface of the particle;
- Absorption of water into the internal structure of the particle;
- Gradual diffusion of the trapped air.

The first phase of surface adsorption leads to a near-instantaneous weight gain \(W_0 \) of the chip. This highlights the rapid nature of the wetting of hemp- and sunflower particles, which we saw earlier when we measured the contact angles. Note that the adsorptive weight gain is directly linked to the ratio between the surface area of the granulate and its mass, but also to the surface tension of the liquid in which it is immersed.

The curves themselves (Fig. 6aa) show, in a second phase, the absorption in the plant structure, for which the kinetics depends on the square root of the elapsed time. This demonstrates the diffusive behaviour of this propagation of water in the structure up to 14 or 24 hours. An inflection of the curve relating to the slowing of that diffusion illustrates the influence of the “finite” dimension of the chips. It should be noted that the thickness of the chip has a very significant influence on when that slowing starts. A less thick chip tends toward equilibrium more quickly. Hence, diffusion takes place not only in a longitudinal but also in a radial direction.

The third phase of the behaviour begins at the start of the inflection on the curve which marks the filling of the particle by the liquid water. This phase corresponds to the diffusion of the air trapped in the particle toward the outside, and is extremely slow (AFNOR, 1999b).

The phenomenon of adsorption/absorption in the chips before the start of the third phase can therefore be characterised by a simple relation:

\[
W(t) = C_A \sqrt{t} + W_0
\]

[Eq. 3.13]

\(W_0 \): Initial water adsorption on the surface of the chip [kg.kg\(^{-1}\)];
\(C_A \): Coefficient of water absorption by the chip [kg.s\(^{-1/2}\)].

Comparing the results between the hemp and sunflower chips highlights the significant capacity for adsorption and absorption of the sunflower granulate. The greater adsorption can be attributed to the rough internal face of the sunflower particles. The available wettable surface is also increased by the multitude of the surfaces provided by the cellulosic marrow, which is shredded during the transformation of the plant material.

The bringing of the plant particles into contact with water, leading to its integration by adsorption/absorption, is responsible for structural swelling. This swelling takes place when water diffuses into the cell walls and forms hydroxide bonds with the hydrophilic compounds such as hemicellulose and cellulose. Figure 3.6 b shows that the tangential swelling \(G_{T,SAT} \) is around 9% for pre-dried hemp and
sunflower chips. This process is quicker than water absorption, because it takes around 20 hours for hemp granulate and 7 hours for sunflower granulate to become dimensionally stable. This stabilisation is the sign that the cell walls have reached their fibre saturation point (FSP), which generally lies between 40 and 50% of the initial mass (Rowell, 2005).

Figure 3.6 Water adsorption/absorption curve by the immersion of chips (60×7×(1–3)mm³) of hemp and of sunflower as a function of the square root of elapsed time (a). Comparison between the gravimetric water adsorption/absorption and the tangential swelling during immersion (b)

Adsorption/absorption of divided granulates

The curves of immersion in water for divided granulates of hemp and sunflower (Figure 3.7 a) are of a similar shape to those found in previous works on hemp material (Cerezo, 2005; Nguyen, 2009a; Arnaud and Gourlay, 2012). As is the
case with the chips, a first phase of adsorption and a second phase of internal absorption can be seen.

The wetting phase can be considered to have finished after 1 minute. The initial adsorption W_0, therefore, will be defined for that duration of immersion. In terms of that value, a significant difference can be seen between the hemp granulate ($W_0 = 214.1\%$) and the sunflower material ($W_0 = 362.3\%$). This too can be attributed, as in the previous section, to the significant roughness of the internal face of the sunflower particles. However, there is an extra factor which comes into play. The divided granulates of hemp and sunflower, have respective specific surfaces estimated at 195 and 226cm2.g$^{-1}$. This larger specific surface of the sunflower granulate also leads to increased initial adsorption. This result is clearly visible when we compare the initial adsorption of that granulate ($W_0 = 362.3\%$) to that of a second sunflower granulate with a smaller specific surface ($S_{SPE} = 157cm^2.g^{-1}$). The W_0 then drops by 40%, ending up at the value of 216% because of the specific surface that is 30% lesser.
Figure 3.7 Water adsorption/absorption curves for immersion of hemp and sunflower granulates on a classic timescale (a) and on a logarithmic timescale (b)

From Figure 3.7, it is evident that the absorption of intra-granular water obeys a logarithmic law. This behaviour is due to the particle-size distribution of the granulates, which, as we saw, also obeys a logarithmic distribution. During this absorption phase, the granules become saturated, one by one, starting with the finest and ending with the coarsest. Thus, we can define the following relation, which is valid until the granulates reach saturation:

$$W(t) = C_A \cdot \log(t) + W_0$$ \hspace{1cm} [Eq. 3.14]
W_0: Initial water adsorption on the surface of the granulates;

C_A: Water absorption coefficient of the granulates.

The analytical absorption laws governing the behaviour of granulates report an absorption coefficient that is 30% higher in a sunflower ($C_A = 60.6$) than a hemp plant ($C_A = 46.4$). It should be noted that, unlike with surface adsorption, the specific surface has a limited impact on absorption. The sunflower granulate n°2, which has 30% less of a specific surface, thus has absorption kinetics reduced by only 5% ($C_A = 57.3$).

3.5 Conclusion

In view of the problems relating to water absorption by plant particles, this property has an important factor on the performance of agro-concrete.

It is crucial to understand that the creation of an interface worthy of the name in a composite material, whatever its nature, involves the creation of forces of adhesion between its components.

To date, limited studies have been published on the adhesion between a mineral binder and a lignocellulosic material.

In this chapter, a summary of the adhesion processes and the problems engendered by the combination of a mineral binder and porous lignocellulosic particles is given and the process of the water as the main problem that needs to be solved.

In this chapter, an overview of the physical laws governing water absorption/adsorption by a plant particle was highlighted. The link with the process of adhesion of a binder to the plant matter was then reported.

The methods used to measure the absorption rate and of the tools used to model it was also described, followed by an analysis of the effect of absorption on the dimensional stability of a particle.

References

AFNOR (b), Méthodes d'essai pour pierres naturelles - Détermination du coefficient d'absorption d'eau par capillarité, AFNOR, July 1999.

http://docinsa.insa-lyon.fr/these/pont.php?id=cerezo (14/09/10)

Chapter 4. Particle Size Distribution

Vincent PICANDET

IRDL – Université de Bretagne Sud – Centre de Recherche, rue de Saint-Maudé – 56100 Lorient, France – vincent.picandet@univ-ubs.fr

Abstract. In this chapter, a state of the art of Particle Size Distribution (PSD) measurement of bio-based aggregates and characterization methods is presented. Shiv particles coming from the stem of plants cultivated either for their fibers (hemp, flax, etc.) or for their seeds (oleaginous flax, sunflower, etc.) are very different from the mineral aggregates typically used in concretes. Owing to the structure of the stem of the plant they are made from, such aggregates are generally malleable, elongated and highly porous with a low apparent density. Irregular shape are generally observed, especially in case of shiv coming from fiber plant due to the shredding action of the decoration process. Such ground bio-mass lead usually to uni-modal size distribution that can be efficiently characterized using basic distribution models with two parameters. Starting from the standardized tools and techniques developed for mineral aggregates, other technics using image processing are investigated and discussed in the global perspectives of the effect of the PSD on the properties of the in-service building material.

4.0 Introduction

At present, no norm exists to cover the PSD of bio-sourced aggregates. They are different in many respects from the mineral aggregates traditionally employed in hydraulic concretes, which rounder, very unyielding with low porosity and considerably denser, for which methods of characterization, mainly by sieving, have been defined and are employed in the published standards. Yet the industrial implementation either on-site or in a precast factory necessitates a better characterization of these aggregates to stay abreast of the quality of the finished materials. This chapter gives the state of the art of previous studies dealing with various grounded bio-mass. Results lead to suggest some PSD measurement recommendations and to focus on some relevant parameters to characterize efficiently the size distribution of shiv particles.
4.1 General characteristics of shiv particles

Straw of bast fibre plants is composed of very long and not heavily lignified cortical fibres surrounding a woody part at the centre of the stem, made of very heavily lignified short fibres [CRO 05]. This woody part carried the sap while the plant was growing. The cortical fibre, rich in cellulose, represents the main value of this agricultural product [BOU 06]. In order to separate the flexible fibres from the separate the stiff and more brittle ligneous woody parts, the straw is usually mechanically processed [SPO 00].

During the process of decortication, the straw is ground, usually using a hammer mills [MUN 05]. The woody part is detached from the fibres, and shredded into small pieces to form hemp or flax shiv. In the case of hemp, 100kg of straw, when ground, yield around 30kg of fibre, 60kg of hemp shiv and 10kg of dust [BOU 06; BEV 09; BRU 09]. Although it is the main constituent, hemp shiv is merely a co-product of the exploitation of hemp. Its main use up until now has been in animal litter or horticultural straw.

The term “hemp shiv” is currently used to denote aggregates from the stem of the hemp plant which may be very varied, as they come from agricultural products that are subject to weather hazards and obtained using various post-harvest processes. Flax shiv, for its part, present still more disparate characteristics, particularly due to the larger variety of species that can be grown.

The preferential orientation of the cell walls along the stem axis lead to a strong orientation of the porosity inside shiv particles, with significant anisotropic properties, as observed in wood [PHA 15]. As a consequence, the process of decortication usually produces elongated particles from the woody part, elongated along the preferential orientation of the microstructure or the porosity, i.e. along the stem axis where they come from. In case of hemp shiv, these pores have a diameter that essentially varies between 10 and 50µm and a length of around 80µm [PIC 13]. In addition, the implementation processes employed generally tend to induce a preferential orientation of these particles which are usually elongated, and therefore – depending on the overall shape of the particles – give rise to a tangible anisotropy of the material, particularly in terms of its thermal characteristics [ELF 08; NGU 10b].

4.1.1 Fibre contents

When the plant is felled, it may be left on the ground for a variable length of time so that retting will facilitate the process of decortication. The advance of this process, the dampness of the straw and the regulations of the grinders used affect the size of the particles obtained when the straw is ground [MAN 04; MIA 11].
Also, the decortication performed may be more or less vigorous, and the fibre content in the hemp shiv or the flax shiv may be variable.

Studies based on two types of hemp shiv: a hemp shiv gained from an advanced process of decortication with very few residual fibres, and another gained from a partial process of decortication, containing a significant amount of short cortical fibres (shorter than 4cm) show a significant effect of residual fibre on the bulk density of the hemp shiv. The remaining fibres, usually short fibres attached to the particles induces an expansion of the apparent bulk volume. When the cortical fibre mass content is higher than 10%, the presence of fibre has a significant effect on bulk shiv and it can be distinguish with the naked eye [PIC 13].

Any standard methods exist to evaluate the fibre content in hemp or flax shiv. When fibres are present, the longest fibres can be easily separated manually in a few grams dry sample. Sieving can be used to complete the separation of the fibres from the hemp shiv. Indeed, the fibres tend to form pellets in the first sieves – see Figure 4.1. Also, when the fibre and the hemp shiv are still linked, the vibrations of the sieve are enough to detach them. Generally, the amount of fibres in the hemp shiv tested varies between 1 and 15% of the mass [PIC 13]. This amount of fibre should not be taken into account in the PSD. Such flexible fibres are not consider as aggregate. They have a higher specific weight and represent a very small part of the overall particle volume. Yet even in the case of hemp shiv obtained by an advanced process of decortication, a detailed examination of the aggregates shows that a small amount of short fibres may still be found attached to a few shiv particles, even after the stages of sieving performed, for at least 30 minutes.

![Figure 4.1 Pellets of fibres formed on the first sieves of the stack [PIC 13]](unedited)

4.1.2 Dust content

According to authors, dust represent all the finest particle, with a mineral or organic composition. The shiv particles, even they are bio-based material, are made of insoluble mineral matter that can be determined by a number of methods. The quantity of ash in fibrous plants is generally low, whereas in grasses it may be
significantly higher – particularly in rice or wheat straw, whose silica (SiO2) content is higher. Separation of organic and mineral compounds will not lead to relevant results regarding the dust content.

Many studies considers that dust represent all particles with a size lower than 0.5 mm [BEV 08], [BRU 09]. However, as mentioned below, this method let suppose a sieving procedure using corresponding mesh size. Is such a case, the size would represent the width of the particle and lower mesh size would be more appropriate to separate particles considered as dust. Sieving method with shiv particle have to be performed with dry material in order to separate the finest particles from the others as far as possible. Nevertheless, a part of the finest particle could remain attached or stuck to the coarser ones. Experience shows that complete separation cannot be accurately achieve with mesh size lower than 0.1 mm.

Hemp shiv also contains dust of organic or mineral origin, usually less than 2% of the weight of the particles passing through the 0.315 mm sieve.

4.1.3 Methods to measure PSD

Two methods can be easily employed to study the PSD of the hemp shiv, each with advantages and drawbacks:

- The conventional method of sieving with dry particles enables us to take measurements directly on a sample of a few hundred grams. The limitations of this method are due to the elongated shape of hemp shiv particles, and their low density, which render sieving less appropriate and unreliable [IGA 09].
- 2D image analysis of particles spread out over a flat surface gives us access to more information. Thereby, the width and length of each particle detected can be measured. However, this method is more complex and requires samples no larger than a few grams. The precision of the results produced is therefore limited by the representativeness of the sample and by the only dimensions obtained for the aggregates by projection onto a plane.

4.2 Sieving methods

The shiv particles have to be dried until constant weight, usually in a ventilated oven, at 60°C or 50°C depending on the running procedures in the laboratories. Sieves with standardized square mesh are used, as is a mechanical siever for the study of soils and mineral aggregates (NF ISO 3310.1 – ASTM E-11-95). The de-
vices used induce a vertical motion which is created by a tapping impulse. In order to distribute the sample amount over the whole sieving surface, the vertical throwing motion is overlaid with a slight horizontal circular motion. This procedure has been selected since most of the laboratory involved already use such devices to characterize mineral aggregates.

However, it should be noted that other devices have been especially designed for needle-shaped, flat, long or fibrous samples such as shiv particles. For instance, horizontal sieve shaker (only horizontal circles motion in a plane) with sieves made of perforated slick steel plates can be used, as recommended by ASABE [ASA 06], see Figure 4.3. The preferential orientation of particles laid on the screen means that only a few disoriented particles pass through the sieve when their length are lower than the diagonal sieve aperture [BIT 09a].

In order to obtain repetitive results, the vibration time has to be extended to 30 minutes at least for a 100-gram sample and for 5 consecutive sieves. The apertures of the sieves used can range from 10 to 0.315 mm.

PSD analysis by sieving assumes that all the particles are practically spherical in shape, and pass through a square aperture when their diameter is less than the side of the square. For flat or elongated particles, such as hemp shiv particles, this point is developed in further detail in section 3.1. The particles may either pass through the sieve in the direction of their length (see Figure 4.8) or retained if they are positioned across the aperture. In the latter case, these particles may also block the passage of particles located above them.

Generally speaking, increasing the time taken over sieving helps to reduce the relative differences of the refused particles obtained for each sieve. On the basis of several tests, the precision of the results, i.e. the evaluation of the particles retained in each sieve, was evaluated at ± 15% with the series of sieves used. These uncertainties are illustrated in Figure 4.2 with two type of hemp shiv: one with a low fibre.
Figure 4.2 Cumulative size distribution obtained by sieving [PIC 13]
4.3 Image-processing methods

This method requires good-quality sampling, in that only a finite amount of material can reasonably be analysed. A classic method of quartering can be applied and repeated as many times as need be. The representativeness of the sample selected is the key element guaranteeing the relevance of the results produced since only few grams can be reasonably analysed.

Image analysis is based on a two-dimensional observation of particles spread out over a flat surface. Images can be obtained with a conventional scanner generally used to digitize documents. This technique offers the advantage of avoiding any distortion of the image which might occur if a camera were used [PIC 13]. The scanner can acquire a colour image or an image converted into 8-bit grayscale that can be processing by an image-analysis program such as “ImageJ”, which is an open source program freely accessible online [FER 12].
The particles are spread out so that they do not overlap or touch, see Figure 4.4.a. This requires very detailed attention when the particles are fine and in these conditions it is difficult to avoid some overlap [IGA 09a] [IGA 09b]. With the aim of simplifying the procedure and increasing the precision of our measurements, rather dispersed distribution of particles reduces touching or overlap bias is recommended even it requires a greater number of frames to be analysed. This method refers to a “static image analysis method” according to the international standard ISO 13322-1:2014(E). Other “dynamic image analysis” methods exist ISO 133222:2006(E), and use image capture of moving particle dispersed on a conveyor or falling particles dispersed in the air.

As the shiv under investigation could be light in colour, a dark background should be used in order to obtain a maximum degree of contrast. Image analysis requires a binarized image, which necessitates prior thresholding of the grayscale image, see Figure 4.4.a. This is the trickiest step in this method. A halo effect, to a greater or lesser degree of severity usually appears around the particles identified. The halo effect tends to decrease the level of grey of the pixels on the outer boundary of the lightest objects. Incorrectly adapted thresholding may therefore contribute to an artificial increase of the size of these objects and consequently, noticeably over- or underestimate (depending on whether the background is dark- or light-colored) the relative size of the smallest objects detected [NGU 10a; IGA 09b]. The lower bound of the threshold can be adjusted so that this halo effect is contained in a band approximately 1 pixel in width around each object. Appropriate thresholding should cover the surface of the objects needing to be detected as precisely as possible. Yet this problem can be greatly assuaged by manual thresholding to process the image. The quality of this thresholding can be verified using small “standard” objects the same colour as the particles to detect.

The resolution of grayscale image should be set in accordance with the size of the finest particles to analyse, i.e. the minimum projected area of the objects to be processed, so as to take account only of the hemp shiv particles and avoid dust or finest particles, represented by less than hundred pixels. For instance, a standard resolution of 600 DPI (dots per inch) on both the vertical and horizontal axes corresponds to a constant scale factor of 0.04233 mm per pixel. This scale factor can be verified by calibration. The precision of the measurements can further be improved by increasing the resolution. For instance, with a 600 DPI resolution, only the particles whose area is greater than 0.2 mm² (i.e. objects represented by at least 110 pixels) can be taken into account for the PSD analysis. Such detection threshold, allow to take into account most of the finest hemp shiv as the coarser dust particle while it fulfil the recommendations of ISO 9276-6:2008 setting the limit to 100 pixels belong each analysed object.

Other processing operations can also be carried out with a view to preparing the images before analysis. One such operation, which involves producing an erosion of a given number of pixels followed by an operation of expansion of the ob-
ject by adding the same number of pixels onto its boundary, can help eliminate dust particles and fibres which are not representative of the hemp shiv particles needing to be identified. This operation is referred to as an opening operation, because it may lead to the de-compartmentalization of cavities, separated by thin boundaries, which may be contained in the objects [FER 12] but some tests with hemp shiv do not show significant effects [PIC 13].

4.4 Image-analysis

Image analysis can go further in particle characterization and gives us access to far more information than does sieving. For each particle detected, its projected area and the perimeter of that projected area are directly measured and recorded. Shape as well as size parameters can be evaluated, and multiclass analysis of bio-based materials can be achieved. The aim of this section is to provide information that could help characterization of different commercial products.

4.4.1 Size estimation

For each particle detected, its projected area and the perimeter of that projected area can be directly measured and recorded. Other more elaborate parameters, such as the minimum convex hull area surrounding the object, can be used to define different formal parameters. Of these, the convexity ratio, χ (also called “solidity”) [MOR 00], defined as the object’s projected area over the convex area surrounding that object, reveals the form of the particles. Perfectly convex particles have a convexity ratio of 1.

Observation of different types of ground-up straw shows that the resulting particles have irregular and angular forms due to the microstructure of the plant and to the shredding action of the decortication process, see Figure 4.4.b. In this scenario, the shapes of the finest particles therefore tend to be polygonal and convex, whereas the shapes of the coarsest particles tend to diversify to include non-convex particles [BIT 09a]. Particles with too low convexity ratio, less than 2/3 for instance, can be removed from analysis devoted to convex particles. Actually, selection before analysis does not lead to a significant difference in case of hemp shiv particles [PIC 13]. Overall, in the case of convex and non-convex particles gleaned from ground straw, the method for determining the length based on the diameter of the smallest enclosing circle or maximal calliper (which some writers also refer to as the Féret diameter) is fairly representative of the length of the object [IGA 09a]. Hence, the length can be directly quantified using this maximum diameter, defining the major axis of the projected area (see Figure 4.4.b).
Figure 4.4 a) Binarized image of singulated arrangement of hemp shiv particles over an A4 size area
b) Hemp shiv particles after binarization of the image, classified on the basis of biases in the analysis which will cause protuberances due to tearing and to remaining connected fibres
c) Adjusted ellipse on a binarized particle to evaluate its length and width

The measurement of the length and width of these particles may be subject to different definitions, depending on the representativeness of these dimensions in the case of the type of object needing to be analysed.

The width can be first defined as the minimal Féret diameter or minimal calliper, i.e. the minimum distance between two parallel straight lines (or planes) encompassing the object, or indeed as the width of the narrowest rectangle (or parallelepiped) containing the object, see Figure 4.5. This method lead to suppose that the estimation of the width is correct in the case of rectangular particles. However, in the case of hemp shiv, the short fibres still connected and the shredded particles give rise to outcrops from the projected areas and ultimately cause an overestimation of the widths obtained by way of this method.

In order to iron out some of the outgrowth of the objects studied (Figure 4.4b) and analyse them using geometric forms deemed to be representative, other methods exist. Such methods consist of adjusting the basic geometric shapes (rectan-
gles, ellipses, triangles, polygons, etc.) to the objects detected [IGA 08; BIT 09a] so as to determine their length, and above all their representative width. Of these, in the case of hemp shiv, an ellipse can be adjusted so that its centre of gravity corresponds to that of the object and its projected area is identical to that of the object. The lengths and widths of the object are therefore defined respectively in accordance with the large and small radii of the adjusted ellipses (see Figure 4.5).

Figure 4.5 Lengths and widths analysed [PIC 13]

It should be noted that with rectangular shapes, the adjustment of an ellipse also leads to an overestimation of the lengths and widths in identical proportions, so that the elongation of the particles, \(\varepsilon \), again remains unchanged.

For around 2600 analysed particles contained in a 4g sample hemp shiv, Figure 4.6 gives a view of the logarithmic scale of the widths in comparison to the lengths analysed. The elongation of the particles, \(\varepsilon \) (the ratio of length to width of the particles), of these point clouds, two general categories of particles may appear: the particles representative of hemp shiv, for which the corresponding point cloud is centred on a width of around 2 mm and dust or micro-fibres, for which the point cloud seems to be truncated by the threshold selected.

Of the various characteristics that are measured, the elongation seems critically important, because it will condition the orientation of the granular arrangement and the anisotropy of the finished materials. The point cloud is primarily clustered around a straight line denoting a constant length-to-width ratio and let suppose an homothetic shape of the hemp shiv particle analysed [PIC 13].
4.4.2 Distributions

Various types of distribution, or probability density, of size of particles may be deduced from these tests, depending on whether they are distributed in accordance with their number or with their projected area. However, so as to be meaningfully representative of potential granular packing and to be comparable with the analyses obtained by sieving, this analysis should be performed on the basis of a distribution of the volume of the particles.

4.4.2.1 Frequency distribution

Distributions on the basis of the number of particles can be performed directly from the raw data from the image analysis step. However, this type of distribution is very sensitive to the number of the smallest particles considered. Such a distribution based on the relative cumulative number of particles passing through a sieve of a given size, denoted as N% in Figure 4.7, therefore depends heavily on the detection threshold. Moreover, such distribution is not relevant in case of aggregates to be incorporated into a mix since a large number of smallest particle represent a minor part of the volume of the whole particles.

4.4.2.2 Area fraction distribution (projected area)

Image analysis also gives us access to the projected area of each particle detected: A_i. The influence of the finest particles on the PSD can therefore be weighted by this criterion, so as to consider a distribution by the cumulative projected area of the particles whose considered size is less than a given value. The distribution of cumulative passing can be directly calculated on the basis of the sum of the projected areas of n particles, arranged in order of increasing size, for a total number of N particles detected, whose total area is A_T. The cumulative distribution by increasing size, $P_i(X \leq x_n)$, similar to the “cumulative passing” obtained by sieving (see Figure 4.2), can then be written as:

$$
P_i(X \leq x_n) = \frac{\sum_{i=1}^{n} A_i}{\sum_{i=1}^{N} A_i} = \frac{1}{A_T} \sum_{i=1}^{n} A_i, \quad \text{[Eq. 4.1]}
$$

where X is the considered size of the particles and $P_i(X \leq x_n)$ the proportion of the projected area accounted for by particles smaller than the nth particle of size x_n. The cumulative distributions $P_i(X \leq x_n)$ and the distributions of size based on the area of the particles are therefore annotated ($\%$) in the figures.

4.4.2.3 Mass fraction distribution

The PSD curves are usually traced on the basis of the results obtained by sieving, i.e. on the basis of a mass distribution. If M_i is the mass of the particle i, the distribution $P_i(X \leq x_n)$ is directly calculated from the cumulative mass of the n smallest particles passing through a sieve of given size out of a total of N particles of mass M_T:

$$
P_i(X \leq x_n) = \frac{\sum_{i=1}^{n} M_i}{M_T}, \quad \text{[Eq. 4.2]}
$$

where X is the considered size of the particles and $P_i(X \leq x_n)$ the proportion of the mass of particles smaller than the nth particle of size x_n.

In order to compare sieving result with image analysis, a cubic weighting with respect to the particle size (width or length) of the particles is required. In case of spherical particles, a thousand 100 µm-diameter particles have the same volume than a single 1 mm particle.

If the apparent density of the particles is independent of their dimensions, $P_i(X \leq x_n)$ can also be written in accordance with the volume V_i of each particle and their total volume V_T. In order to deduce a volume distribution from a projected area distribution some assumptions need to be introduced. Based on many ob-
servation on hemp shiv, the assumption of quasi-homothetic particles can be naturally introduced. It considers that the particles are similar in shape, \(e_i \) denotes the average thickness over the whole of the projected area of each particle, i.e. The volume-based cumulative distribution is obtained by weighing the area, \(A_i \), with the width, \(e_i \), of each particle considering \(V_i = A_i e_i \).

\[
P_M(X \leq x_n) = \frac{1}{V} \sum_{i=1}^{n} V_i = \frac{\sum_{i=1}^{n} e_i A_i}{\sum_{i=1}^{n} e_i A_i}
\]

[Eq. 4.3]

Many complementary tests can be performed; yet it is not easy to approximate the thickness \(e_i \) of each particle. It can only be supposed that since the particles are simply and freely spread out over a plane, this average thickness is less than the width of each particle. The thickness of the woody part in the stem varies noticeably, depending on the climatic conditions, the date of harvesting and the density of the plantation [SCH 06] on the one hand, and then depending on the height of the particular section within the stem [RAH 10]. However, the process of decortication is applied to all the cropped straw, giving rise to multidirectional grinding. As observed for different types of ground straw, the general shape of the particles does not seem to be affected by the diameter of the stems being ground [NGU 10a; IGA 09a] whereas the size of the particles produced depends essentially on the process of grinding itself and on the settings used [BIT 09a]. In the presented case, the average elongation ratio of the particles is, overall, independent of projected area. Extension of this assumption into the third dimension lead to consider the average ratio of width to average thickness, \(\Phi = e_i / l_i \), constant as well.

If the density of the particles is identical, with a similar shape irrespective of their size, i.e. if they are generally homothetic, the mass distribution of the particles can be deduced from the projected area \(A_i \) and the width \(l_i \) of the particles by the following relation:

\[
P_M(X \leq x_n) = \frac{\sum_{i=1}^{n} l_i A_i}{\sum_{i=1}^{n} l_i A_i} \left(\text{if } \frac{e_i}{l_i} \leq \Phi \text{ (const.)} \right)
\]

[Eq. 4.4]

It is in view of this hypothesis that the cumulative distributions \(P_M(X \leq x_n) \) and distributions of size based on the mass of the particles are annotated as \((M\%) \) in Figure 4.7 hereafter.

It should be noted that the cumulative distribution \(P_M(X \leq x_n) \) depends neither on the value of the apparent density of the particles, \(\rho_a \), nor on \(\Phi \). Because \(P_M(X \leq x_n) \) is sensitive to the largest particles, this distribution may be considerably different from \(P_d(X \leq x_n) \) in the case of a spread distribution. It is interesting to note that if all the particles had the same thickness, the approximation of the cu-
cumulative distribution by mass, $P_M(X \leq x_n)$, defined in equation [Eq. 4.4], would be equivalent to $P_A(X \leq x_n)$ defined in equation [Eq. 4.1]. Figure 4.7 illustrate the difference observed between the cumulative distributions based on the number of particles, the projected area and the supposed mass of the particles, for both the width and length of hemp shiv particles.

Figure 4.7 Lengths and widths deduced from 2600 analysed hemp shiv particles

4.4.2.4 Average flatness estimation

The average ratio of the thickness to the width, Φ, can be considered as the flakiness of the particles. As mentioned in the previous section, it is not needed to deduce the volume or mass fraction distribution from the area distribution. It can be evaluated if the mass or total volume of the particles being analysed is known [KWA 99].

$$\Phi = \frac{V_T}{\sum_{i=1}^{N} A_i} = \frac{M_T}{\rho_v \sum_{i=1}^{N} A_i}$$ \hspace{1cm} [Eq. 4.5]

In our case, the mass of the sample is known, and the apparent density of the particles ρ_v can be estimated [NGU 10a; CEY 08]. Introducing the apparent density ρ_v of the particles approximately equal to 300kg/m3, in the case at hand; $\Phi \equiv 1/3$ if the dimensions are estimated on the basis of adjusted ellipses.
4.4.3 Comparison with the results obtained by sieving

As presented in Figure 4.7, the cumulative distributions of the particles are, overall, closer to the curve of cumulative passing obtained by sieving, considering the width, rather than the length. This implies that the particles are able to pass through the sieves in a direction perpendicular to the meshes, and that the sorting of the hemp shiv when the particles are sieved is done primarily on the basis of the width rather than the length of the particles.

Assuming ellipsoidal particles, elongated and flaky, when these particles can pass lengthways through the sieves, their width may be oriented along the diagonals of the square holes (see Figure 4.8). In this case, only those particles whose width is greater than $2^{1/2}d$ are retained by a sieve whose mesh size measures d.

![Figure 4.8 Cross-section of the largest elliptical particle able to pass through the sieve, in the direction of its length and along the diagonal of the square hole](image)

Figure 4.8 shows that the distribution of the cumulated mass widths (M%) is very similar to the distribution obtained by considering the diagonal of the square opening in the sieves, $2^{1/2}d$ mm instead of the mesh size. As Figure 4.7 confirms, the size-per-mass distribution of the particles is also that which corresponds most closely to the results obtained by sieving. In addition, the standard distributions of particle size presented shows uni-modal nature of the area fraction ($A\%$) and mass fraction ($M\%$) distributions for the width and length of the particles that can be characterized using standard distributions laws.
4.5 Characterization of the PSD

4.5.1 Means and standard deviations

The arithmetic mean of the size (width or length) of the particles, weighted by their area or mass, and the associated standard deviation, can be used to gain an overall characterization of the PSD. The standardized degrees of skewness and kurtosis relative to the 3rd- and 4th-order moments of distribution can also be calculated.

However, in that the distributions can be approximated by a normal law according to a scale of logarithmic size, the weighted geometric mean X_{gm} and its associated standard deviation σ_{gm}, defined in the two equations below, appear to be more relevant when seeking to characterize the distribution, as in the case of numerous distributions of particle sizes obtained from the comminution of the stems of different herbaceous plants [ASA 06; BIT 09a; BIT 09b; MIA 11] or organic dusts [IGA 09b].

\[
X_{gm} = \exp \left(\frac{\sum M_i \ln(x_i)}{\sum M_i} \right) \quad \text{[Eq. 4.6]}
\]

\[
\sigma_{gm} = \exp \left(\sqrt{ \frac{\sum M_i (\ln(x_i) - \ln(X_{gm}))^2)}{\sum M_i} } \right) \quad \text{[Eq. 4.7]}
\]

4.5.2 Distribution models

The maximum amount of information can be obtained if a distribution model is adjusted to the PSD under investigation [DJA 97]. Different laws exist that are based on semi-infinite variables. Usually, basic models with two parameters – one relating to the average size and the other to the spreading of the distribution – are used.

4.5.2.1 Log-normal distribution

Given the uni-modal nature of the distributions presented and apparently symmetrical according to a logarithmic scale of size, the Log-Normal law seems
obvious as a first approach [LIM 01]. Its distribution function of the lengths X is written as follows:

$$P_{\text{LogN}}(X \leq x) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\ln(x) - \mu}{\sigma \sqrt{2}} \right) \right]$$ \[\text{Eq. 4.8}\]

where μ and σ are the parameters needing to be identified, and \(\text{erf}(x) \) denotes the Gauss error function. It should be noted that \(e^\mu \) and \(e^\sigma \) reciprocally represent the weighted geometric mean and the associated standard deviation, which can both also be calculated on the basis of the whole dataset including each particle identified, and usually denoted as \(X_{\text{gm}} \) and \(\sigma_{\text{gm}} \).

4.5.2.2 **Rosin-Rammler distribution**

When the size distribution relates to particles or fragments obtained by grinding, one of the other models used most frequently in the existing body of literature is the Rosin-Rammler model [DJA 97], particularly in the case of biomass, [ALL 03; ALL 04; BIT 09b; BIT 11]. The distribution function of this model, identical to the Weibull distribution, can better represent skewed distributions [ROS 33]:

$$P_{\text{RR}}(X \leq x) = 1 - \exp \left[- \left(\frac{x}{\lambda} \right)^k \right]$$ \[\text{Eq. 4.9}\]

where λ and k are constants relating respectively to the dimension of the 63.2th percentile of the distribution function and to the tightening of the distribution. This distribution function has the advantage of exhibiting a reciprocal function which can be used to directly calculate the dimensions corresponding to a given cumulative fraction.

$$x = \lambda \left[-\ln(1 - P_{\text{RR}}(X \leq x))^\frac{1}{k} \right]$$ \[\text{Eq. 4.10}\]

The median size of the particles $D_{\text{RR}}(50)$ corresponds to $P(X \leq x) = 50\%$ and is equal to $\lambda \ln(2)^\frac{1}{k}\text{mm}$.

4.5.3 **Fitting of the distribution laws**

The aforementioned two distribution models can easily be adjusted to the area fraction and volume fraction distributions. Figure 4.9, shows the fitted models en-
compass each of the distributions, in width or length. Overall, the distributions are better represented by a log-normal law, particularly for the smallest values. These two models can also be adjusted for data obtained by sieving, but with far fewer points (see Figure 4.2). Using a common “least-squares” method, as mentioned in international standard ISO 9276-3:2008 about the adjustment of an experimental curve to reference model of PSD, the correlation coefficient R^2 is lower than 0.999 over 2600 identified particles. The values deduced from the parameters of these models can thus be used to give a fairly accurate overall characterization of the PSD under study, as in the case of various biomass coming from the comminution of the stem [ALL 03; ALL 04; BIT 09b; BIT 11]. The Rosin-Rammler model can be better at describing the PSD obtained by sieving of the finer particles, because it takes account of greater skewness toward fine particles. The log-normal law, for its part, is better at describing the distributions obtained by image analysis and corresponds more closely to the modes observed.

![Figure 4.9 Comparison of the models adjusted to the cumulative distributions of width and length in area fraction and mass fraction](image)

4.6 Conclusions

The image analysis method, based solely on 2D observations, can be used to gain a precise measurement of the length distribution of the hemp shiv particles and, to a lesser extent, when these particles retain connected fibres, of their width. Various image analysis algorithms can be used to determine their width, such as the minimum Féret diameter or the measurement of the small diameter of an adjusted ellipse. Many different shape parameters are available, and a large number of particles can be identified to deliver statistically robust results.
A near-constancy of the average elongation of the particles for the different surface intervals is observed. In addition, according to this basic hypothesis, image analysis allows us access to the average elongation \(\varepsilon \) and the average flatness \(\Phi \) of the particles assuming homothetic shape in 3D, i.e. a quasi-constant average flakiness. These parameters cause significant anisotropy in the materials due to casting process of LHC. The comparison between sieving and image analysis shows that the square-mesh sieves conventionally used for mineral aggregates separate the hemp shiv particles, elongated and flat, essentially on the basis of their width. Furthermore, given how thin they are in comparison to their width, the hemp-shiv particles pass through the sieves if that width is less than the diagonal of the square holes.

Hence, conventional sieving offers an initial approach to the distribution of the width of the particles. Notably, it enables us, if need be, to separate the cortical fibres remaining after the decortication operations, and also to evaluate the amount of finest particles, or dust depending on the definition adopted, contained in the hemp shiv. Sieving can also be used to supplement the image analysis techniques presented herein.

From a practical point of view, therefore, image analysis can be performed very easily with basic office materials, a flatbed scanner (or digital camera) and a modern computer. The software packages, which are freely available online, can be used in their basic, default configurations. Experience shows us, in the case of the hemp shiv under investigation, that a detection threshold for the particles set around 0.2 mm\(^2\) (or 100 pixels at least), with no special discrimination between the particles in view of their convexity, yields similar results: with no significant differences in terms of the distributions either of area fraction or of mass fraction. In addition, it is sufficient to sample 4 g of material obtained by successive stages of quartering to provide reliable and reproducible results.

The distributions obtained by sieving and image analysis, for their width or length, cumulative in terms of area or mass, are usually uni-modal and can be accurately approximated using a classic log-normal law. The weighted geometric mean and the associated standard deviation therefore constitute the main representative parameters with regard to the granular packing and to the overall properties induced in the materials, to characterize this type of PSD.

References

Chapter 5.

Bulk density and compressibility

Vincent PICANDET

IRDL – Université de Bretagne Sud – Centre de Recherche, rue de Saint-Maudé – 56100 Lorient, France – vincent.picandet@univ-ubs.fr

Abstract. Hemp is made of highly deformable particles. Depending on the water content, on the particle size distribution, and on many other material parameters such as initial porosity and retting of the processed stalks, the mechanical behaviour of shiv in bulk can change significantly. In a compaction process, the mass per volume of the raw material increases with the applied stress and some creep or relaxation effects occur as observed in wood based materials. Hence, the mechanical properties of the bulk impact the packaging of the raw material as the shiv density inside the final mix and the in-service properties of the composite material. In this way, the bulk compressibility is primarily useful to manage the building processes, from transport of the raw material, to mixing and casting.

5.0 Introduction

Unlike mineral aggregates, usually employed in hydraulic concretes, bio-based aggregates made from plant particles are highly deformable and cannot provide a rigid skeleton to the composite material. Their mechanical behaviors impact significantly the building processes, especially in case of pre-casting where highest compaction can be achieved on the fresh mixes to optimize their mechanical resistance [NGU 09] [NGU 10], and finally strongly influence the cast concrete and its in-service behavior [TRO 14a]. In case of building materials, only few studies deal with the mechanical characterization of the bio-based aggregate in bulk. This chapter presents the test methods used to characterize the bulk compressibility and the results obtained with the same hemp shiv. Some analysis are also presented, especially in case of compression in a die where friction effects have to be simultaneously analyzed.
5.1 Density and porosity, case of hemp shiv

The densities and porosities measured on two types of hemp shiv [NGU 10a], named as “HS” and “FHS” with respectively less than 2% and more than 12% of cortical fibers by weight are summarized in Table 5.1.

The apparent density when loose and dry is measured on the basis of a cylindrical volume 160 mm in diameter and 320 mm in height, in which the loose dry hemp shiv is poured. Many test have been proceeded in the frame of second round robin test of this TC Rilem 236 to evaluate the effect of the pouring procedure and the effect of the size of the specimens on the results.

Otherwise, the apparent density of the particles can be measured on the basis of a straight section of stem, the area of which was determined by image analysis and the measured height. This figure, given as an indicative value, is underestimated in that the hemp shiv particles probably have a greater density [CEY 08; CER 05], owing to the stresses undergone during the decortication process and the stress of confinement when they were conditioned and kept in a 20kg sack. A value of 300 kg.m\(^{-3}\) would, at first glance, seem to constitute a more meaningful density of the particles used. It would represent a decrease of the intra-granular porosity but a slight increase in the inter-granular porosity as reported in Table 5.1.

The apparent density of the solid phase is determined by a pycnometer, using toluene as filling fluid.

From these measurements, we deduce the following porosity values:

- total porosity: \(\phi_{\text{total}} = 1 - \rho / \rho_S \)
- intra-granular porosity: \(\phi_{\text{intra}} = 1 - \rho_P / \rho_S \)
- inter-granular porosity: \(\phi_{\text{inter}} = 1 - \rho_P / \rho_V \)

It should be noted that when cortical fibers are present in hemp shiv, these fibers make up a significant proportion of the loose volume, and largely contribute to the increased inter-granular porosity.

Although the apparent density of the dry particles is probably underestimated, the intra-granular porosity proves to be very high, which accounts for the excellent absorbent quality of this material.
Table 5.1 Densities and porosity of the hemp shiv under examination [NGU 09]

<table>
<thead>
<tr>
<th></th>
<th>HS</th>
<th>FHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{L}) apparent density loose and dry [kg.m(^{-3})]</td>
<td>112</td>
<td>71</td>
</tr>
<tr>
<td>(\rho_{P}) apparent density of the dry particles [kg.m(^{-3})]</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>(\rho_{S}) apparent density of the solid phase [kg.m(^{-3})]</td>
<td>1460</td>
<td>1440</td>
</tr>
<tr>
<td>(\phi_{\text{tot}}), total porosity</td>
<td>92%</td>
<td>95%</td>
</tr>
<tr>
<td>(\phi_{\text{intr}}), intra-granular porosity</td>
<td>82%</td>
<td>82%</td>
</tr>
<tr>
<td>(\phi_{\text{intg}}), inter-granular porosity</td>
<td>56%</td>
<td>72%</td>
</tr>
</tbody>
</table>

5.2 Bulk compressibility

5.2.1 Low stress compression in a die

The apparent density \(\rho_{L} \) of loose dry hemp shiv (see Table 5.1), can be significantly increased by the application of confining stress. The application of such stress is sometimes necessary for storage and/or transport. Applied upon implementation or casting, it can help greatly reduce the porosity in the elaborated material and increase its mechanical resistance [NGU 09].

![Figure 5.1 Change in the apparent density of loose dry hemp shiv as axial stress is applied in the cylinder [PIC 13]](image-url)
A compacting test is performed in a steel cylinder with an internal diameter of 160 mm and a height of 320 mm. The stress is applied axially by a piston sliding into the cylinder. Compacting is performed by a hydraulic press with a capacity of 500 kN. The movement of the piston and the force applied are recorded. The force-displacement curve for both types of aggregates is recorded and expressed as Figure 5.1, plotting axial applied stress against equivalent bulk density of dry hemp shiv.

For this test, the hemp shiv was humidified so that its water content was 100%, so that the test would be representative of the mechanical behavior of the hemp shiv at the time when it is cast. This in fact corresponds to its water content at the moment of mixing during the manufacture of blocks destined for prefabrication by controlled compacting in the fresh state of hemp concrete [NGU 09; NGU 10a].

Figure 5.1 demonstrates that the apparent density of loose hemp shiv becomes greater than that of the uncompressed shiv once stress of 0.7 MPa is applied. The inter-granular porosity is then probably reduced, but, in view of the deformability of the shiv particles, no information can be gleaned from these tests about the inter-granular porosity in the compressed bulk.

In order to characterize the compressibility of hemp shiv in bulk, a basic model with two parameters, σ_o and k, [PIC 13] described by equation [5.1], inspired by models frequently used in the study of compacting of different biomasses [EMA 07], was used. It directly links the stress applied to the hemp shiv, σ, to the equivalent bulk density of dry hemp shiv in its initial state, ρ_{io}, and to that in the stressed state ρ_L.

$$\sigma = \sigma_o \left(\frac{\rho - \rho_L}{\rho_L} \right)^k$$

[Eq. 5.1]

This model fairly accurately describes the experimental behavior observed within the range of stresses applied. The values of the parameters σ_o and k are recapplied in Table 5.2. Here, σ_o is the compression stress required to double the initial bulk density, ρ_{io}. The parameter k, which relates to compressibility [JON 60], indeed appears greater in the case of fibrous hemp, FHS, because it exhibits greater relative deformation under equal stress.

Table 5.2 Parameters of the compressibility model to the cases under investigation

<table>
<thead>
<tr>
<th></th>
<th>ρ [kg.m$^{-3}$]</th>
<th>σ [MPa]</th>
<th>k (compressibility) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>112</td>
<td>0.38</td>
<td>1.3</td>
</tr>
<tr>
<td>FHS</td>
<td>71</td>
<td>0.13</td>
<td>1.8</td>
</tr>
</tbody>
</table>
5.2.2 High stress compression in a die

A rigid compression die has been developed to reach relatively high compression pressure in order to study the processing of lime hemp composite blocks by compaction [TRO 14a]. The compaction of the fresh material can significantly increase the compressive strength of hemp concrete by reducing the volume of voids within the material [NGU 09]. Such a process improves mechanical strength while using lower binder contents. Compaction also increases the strain capacity before collapse while maintaining good thermal insulation properties [NGU 10b].

However, [NGU 13] observe that LHC compacted blocks are not homogeneous; they have a higher density, mechanical strength and conductivity in the upper area of the block than in the lower area. This effect is due to friction along the die walls during compression. An instrumented die has been developed to identify the cause of heterogeneity induced during moulding. This die was designed to provide information on the effective stress state undergone by LHC during compression, and particularly on the friction effects at the walls. It consists of a steel cylinder cell and two punches. The upper punch can move and is driven by the piston rod. This piston rod is mounted in a 250 kN compression test machine equipped with force and displacement transducers. The lower punch is also mounted on a force sensor. The thickness of the cylinder wall is 10 mm thus ensuring negligible strain up to a radial pressure of 10 MPa.

A mean radial pressure up to 10 MPa can be reached, and several flat spots were machined on the outside wall of the cell to ensure good accuracy and local measurements of radial stress. The strain gauge calibration was carried out with water. The stress state has been firstly evaluated for several mixes (dry or wet shiv without lime) to understand compressibility, friction and stress transmission mechanisms.
Figure 5.2 The compression device, fitted with strain gauges [TRO 14a]

Figure 5.3 Geometry of the device and picture of the experimental setup [TRO 14a]

5.2.2.1 Measurements, boundary conditions and stress

The cylinder, containing the mixture to be compacted, is circular cross section with a die radius R. The compacted height is h, see Figure 5.3a). Considering a
rigid die, it is assumed that any radial displacement occurs along the sample height.

The axial mean stress on the upper punch, $\sigma_{z\text{UP}}$, is controlled as $F_{\text{UP}} = \pi R^2 \sigma_{z\text{UP}}$.

The axial mean stress on the lower punch, $\sigma_{z\text{LP}}$, is deduced from the force measured from the transducer $F_{\text{LP}} = \pi R^2 \sigma_{z\text{LP}}$.

The force F_{LP} is not a controlled parameter; it is dependent on $\sigma_{z\text{UP}}$, on friction and on the stress transmission of the mixture from an axial to a radial direction. Generally, as proposed first by Jansen for stresses, in silos [JAN 95], and elaborated by Jacky in soil mechanics [JAC 44], and by many authors working on powder compaction [DOR 00, MOD 00, CHT 02, SIN 03, JON 05], or extrusion process of granular pastes [PER 09], this stress transmission consists of a proportionality law between the radial stress at the wall σ_r and the longitudinal stress along the cylinder σ_z as $\sigma_r / \sigma_z = \alpha$, where α is the transmission ratio. Moreover, tangential stress at wall τ_z and radial stress σ_r are linked by a Coulomb law (wall/sample friction coefficient μ), such as $\tau_z(z) = \mu \sigma_r(z)$ neglecting any cohesion in case of granular material.

Considering radial stress independent from the radial abscissa, i.e. constant in an ortho-axial plan, transmission ratio α and the friction coefficient μ constant along the specimen. These two coefficients must be considered as mean values and are consequently computed from the values of σ_{zm} and σ_{rm}, i.e. the mean values of axial and radial stresses respectively. Mean radial stress σ_{rm}, is deduced from the radial strain gauge measurements. In general terms, the literature considers that σ_{rm} is very close to radial stress at half-height of the specimen:

$$\sigma_{zm} \approx \frac{1}{h} \int_0^h \sigma_z(z) \, dz \quad \text{or} \quad \sigma_{zm} \approx \sigma_r \left(\frac{h}{2} \right) = \alpha \sigma_z \left(\frac{h}{2} \right)$$

[Eq. 5.2]

Neglecting the gravity effect, the balance of the stresses acting on an horizontal disk of material within the die, see Figure 5.4, leads to express the vertical stress gradient as $d\sigma_z/dz = 2 \tau_z / R$. Introducing the coefficients α and μ in order to express τ_z as a function of σ_z, this axial stress can be also expressed as $d\sigma_z/dz = 2 \alpha \mu \sigma_z / R$. The solution of this first order differential equation leads to the following expression of σ_z according to z:

$$\sigma_z(z) = \sigma_{z\text{LP}} \exp \left(2 \alpha \mu z / R \right)$$

[Eq. 5.3]

Since the mean upper stress on the upper punch $\sigma_{z\text{UP}}$ is known, the forces balance on the whole specimen gives for a given compression state and a given height h of the sample:
\[\mu_f (h) \sigma_{\text{m}} (h) = \frac{R}{2h} (\sigma_{zUP} - \sigma_{zLP}) \]

[Eq. 5.4]

Where \(R \) is the inner radius of the cell, \(h \) is the specimen height, \(\sigma_{zUP} \) and \(\sigma_{zLP} \) are the pressures deduced from the upper and lower force transducer measurements, and \(\sigma_{\text{m}} \) is the mean radial stress, deduced from strain gauge measurements. The evolution of stress transmission coefficient \(\alpha \) and friction coefficient \(\mu_f \) can be then written as:

\[
\alpha = \frac{\sigma_{\text{m}}}{(\sigma_{zUP} - \sigma_{zLP})} \ln \left(\frac{\sigma_{zUP}}{\sigma_{zLP}} \right) \quad \text{et} \quad \mu_f = \frac{R}{2h} \left(\frac{\sigma_{zUP} - \sigma_{zLP}}{\sigma_{\text{m}}} \right)
\]

[Eq. 5.5]

In the following, the use of a compressibility model such as Cooper-Eaton model allow to analyse the evolution of this coefficients according to the applied stress during the compression test.

Figure 5.4 Stress balance on a virtual slice of compacted material in the die

5.2.2.2 Compressibility

The compressibility of a granular bed characterizes the evolution of density versus the upper stress applied during compression [LEU 82] while the compactibility characterizes the evolution of strength versus maximum compression application during the process.

Based on studies on the compaction of biomass resources, several models of compressibility were tested for hemp mixtures through granular materials [CHE 10] [MAN 04] [EMA 07] or powder compressibility [WAL 23] [JON 60] [BAR 87] [COO 62] [KAW 71]. These models generally link volume or density to upper pressure \(\sigma_{zUP} \). Compactness, \(C \), is the most significant parameter to characterize the compaction state. In this study, compactness corresponds to the sum of solid volume fraction and liquid volume fraction, i.e. the ratio of liquid and solid volumes to the total volume of the sample. The liquid phase is included because it is assumed to be physically linked to shiv when compaction starts. This assumption is valid as soon as the water content is low, ensuring that no free and draining water issue from the sample. During experiments, no loss of mass was recorded.
The mechanisms of compaction are generally distinguished in three steps, as first described by Seeling and Wülff [SEE 46]: 1/packing of particles, 2/ elastic and plastic deformation, 3/ fragmentation.

This is the reason why Cooper and Eaton considers that void filling depends on pore size, i.e. when rearrangement and filling of small voids occur or when plastic deformation and fragmentation occur. In Cooper and Eaton's model, P_r and P_d are coefficients related to the pressure needed to induce the process that has the greatest probability of occurring.

\[
\frac{1-C_0/C}{1-C_0} = a_1 \exp\left(-P_r / \sigma_{\text{up}}\right) + a_2 \exp\left(-P_d / \sigma_{\text{up}}\right)
\]
[Eq. 5.6]

For shiv and LHC mixtures, P_d values are ten to twenty times higher than P_r, as observed in the compaction of an alumina powder but these values are very low compared with metal or mineral powder beds; similarly to straw particles, wet or dry, which are very flexible and compressible. Both the rearrangement and deformation phase are easier to discern for biomass resource particles than for rigid and frictional ones. Wet shiv are easier to compact than dry mixtures: the shiv aggregates absorb water and become heavier, more flexible and more compressible (at a local scale). These factors facilitate both rearrangement and deformation of the granular bed. But water content tends also to increase contact surface at the wall and between particles. Actually, the product α_{μ_f}, see Eq. 5.4 and 5.5, is relative to the portion of the vertical compression stress exerted at the wall that induces heterogeneity inside specimens. In case of highly densified shiv, this product α_{μ_f} is minimum for dry state and usually reaches a maximum around 15 % water content in case of “HS” hemp shiv type [TRO 14].

As a consequence, for biomass resources, the sum (a_1+a_2) of the first and second parameters of Cooper and Eaton's Model tend towards the theoretical compactness at infinite pressure, which is ideally the unity [MAN 04], see Figure 5.5. Therefore in the computations, the parameter a_2 was always taken as being equal to $1-a_1$. The parameter ‘a_1’ makes it possible to quantify compactness at the end of rearrangement and/or at the beginning of the plasticity phenomenon.
Figure 5.5 Cooper and Eaton's model versus experimental results with rearrangement and plasticity contributions to the compactness

If the pressure increases towards an infinite value and the first term of the model is only considered, as shown in Fig. 7, a basic relationship between C, C_0 and a_1, is found to compute a rearrangement compactness C_r:

$$C_r = \frac{C_0}{1 - a_1 (1 - C_0)} \quad [Eq. 5.7]$$

where C_0 is the initial (bulk) compactness.

The values of a_1 as the rearrangement pressure P_r and deformation pressure P_d, can therefore be computed by fitting experimental curves with Cooper & Eaton's model, see Figure 5.5. Examining the coefficient of determination, R^2 obtained with hemp shiv coming from “Chanvrières de l’Aube, LCDA” the three-parameters fitting Cooper & Eaton's models [COP 62] gives the best results, see Figure 5.5.

Otherwise, among two-parameters models found in literature, the Kawakita & Lüdde's [KAW 71] gives the best fit [TRO 14b].

5.2.2.3 Effect of the moisture content

Compactness is generally higher with wet shiv than with dry shiv: water makes shiv heavier and easier to deform, but moisture has the opposite effect below and above 20% moisture content: a first optimum state is observed around 10% for initial compactness, and for characteristic pressures P_r and P_d. Actually, moisture could act as an adhesive up to a given moisture (around 15%), and as a lubricant for higher moisture contents. As usually observed in soil compaction, in case of many bio-based particles, an optimum water content appears to achieve a given compaction with the lowest energy requirement. This maximum density is usually obtained when the moisture content ranges from 10% to 45% [DOG 89]. In case
of hemp shiv compressed in a die, this optimum is reached around 15% of moisture content [TRO 14b].

5.2.3 Unconfined compression

Cylinders of 160 mm diameter and 320 mm high is filled with 50 mm thick layers under a stress of compaction of 0.05 MPa by using only dry hemp shiv similar as the one tested in a die. In such a case, hemp shiv particles exhibit enough cohesion to make test specimen that can stand alone, without any applied stress, when the cylindrical mold is removed. Even with dried particles, (dried at 60°C until constant weight) the 160 mm diameter and 320 mm diameter cast specimens can be directly loaded with uniaxial compressions [CER 05] [ARN 12].

![Figure 5.6 Tested 320 mm high specimen made of hemp shiv only. The initial particle cohesion is obtained with a slight compaction in a 50 mm layers in a 160 mm inner diameter cylinder [CER 05]](image)

The stress-strain curves resulting from simple and cyclic compressions are perfectly superimposed which ensures the reproducibility of the tests carried out. Hemp particles in bulk are very strongly compressible: the cylinders can indeed sustain strain levels higher than 70% before the particles heap collapses [ARN 12]. The Figure 5.7 shows that the stiffness of the sample continuously increases while its height decreases due to compression. At the beginning of the test, the apparent stiffness is about 0.25 MPa while it reaches 4.5 MPa at the end, under a load of 1.5 MPa.

Moreover, load cycle exhibits significant hysteresis especially when the strain range, or load range increases. The unloading branch with a delayed stress response shows a viscosity effects that can be due to the air flows inside the highly
porous deformable material. The radial strain measurement allow to deduce that the volume of the sample decreases significantly during compression, with Poisson coefficient, \(\nu \), lower than 0.05 [CER 05]. The air drained during compaction induces an incoming flow during unloading that delays the stress response of the gradually unloaded specimen.

![Figure 5.7 Simple and cyclic compression tests on 320 mm high and 160 mm diameter specimens made of dry hemp particles without binder [CER 05]](image)

Significant residual strain is observed at the end of each loading cycle. Rearrangements of particle should be the main effect leading to such large irreversible strain [CER 05]. This rearrangement, especially in case of unconfined specimens, leads to the filling of small voids. Specimen density, or compactness, increases irreversibly due to a first load cycle, as assumed in the Cooper and Eaton model providing the best fitting of the experimental results [TRO 14b], see previous section.

5.3 Conclusions and perspectives

Mechanical characteristics of shiv particles or bio-based aggregates provides many information to set the casting process and to predict the mechanical contribution of the granular skeleton inside the in-service material. For instance, hemp shiv particles in bulk, due to their high porosity, are strongly deformable. The initial volume of the bulk can be easily reduced by 70% under a compression stress. Up to day, two kind of tests has been developed to characterise the mechanical behaviour of the shiv particles in bulk:

- Compression in a die, with various level of compression stress. In such a case, the wall friction has to be consider as it becomes predominant when the applied compression stress increases.
Unconfined compression on initially compacted shiv. Prior testing, compaction of successive shiv layer in a rigid cylinder is required in order to obtain enough cohesion to make an initial cylindrical heap of particles. This test needs diametrical measurement to be correctly analysed. In case of an initial aspect ratio (high to diameter) of 2, the compression stress is limited to few MPa before the particles heap collapses.

Otherwise, a confined compression test in a triaxial cell would provide more information with negligible friction effects at the wall and without initial compaction. Preferential orientation of the particle due to initial compression before testing may introduce a bias in the measurement. In this way of investigation, few unpublished results have been obtained with hemp shiv and should be consolidated to provide more information on the mechanical behaviour of such bulk particles.

The creep and relaxation effects should also be investigated, according to the stress level and the moisture content, as they are representative of the aggregates skeleton inside the in-service material.

Finally, correlations between particle size distribution (PSD), see previous chapter, and initial density or compressibility of such highly deformable particles have to be investigated. In such bio-based building materials, as in the case of mineral aggregates in concrete, the PSD should be set to optimize the mechanical and/or thermal properties of the in-service material.

References

Chapter 6. **Hygric and thermal properties of bio-aggregate based building materials**

Florence COLLET

Laboratoire de Génie Civil et Génie Mécanique de Rennes, équipe Matériaux-Thermo-Rhéologie, Université de Rennes 1, France
IUT Génie Civil Construction Durable - 3, rue du Clos Courtel- BP 90422 -35704 Rennes Cedex – France - florence.collet@univ-rennes1.fr

Abstract. This chapter gives the state of the art of previous studies on hygric and thermal properties of bio-aggregate based building materials. Firstly, hygric characteristics such as sorption isotherms, water vapor permeability and moisture diffusivity are given. The ability of bio-aggregate based building materials to moderate ambient relative humidity may be valued using moisture buffer value. Then thermal properties (thermal conductivity, thermal diffusivity conductivity and specific heat capacity) are reported. Finally, concluding remarks on hygrothermal behavior with simultaneous heat and mass transfer are provided, they underline that considering only thermal conductivity and specific heat capacity is not sufficient to evaluate the energy performance of bio-aggregate based building materials. The results found in bibliography mainly concern wood-based and hemp-based materials.

6.0 Introduction

Bio-aggregate based building materials (BBM) are made from various binders and bio-aggregates. The more efficient formulation parameter is the aggregate to binder ratio. These materials are highly porous. Their porosity includes a wide range of pore sizes: macropores due to the imperfect arrangement of bio-aggregates, mesopores within aggregate and binder, and micropores in the binder. This porosity is open and interconnected and is thus the place of heat and mass transfer and moisture storage.

This chapter gives the state of the art of previous studies on hygrothermal behavior of bio-aggregate based building materials. Firstly, hygric characteristics such as sorption isotherms, water vapour permeability and moisture diffusivity are given. Their ability to moderate ambient relative humidity is also quantified by moisture buffer value. Then thermal properties (conductivity and specific heat ca-
pacity) are investigated. Finally, concluding remarks on hygrothermal behavior with simultaneous heat and mass transfer are provided.

6.1 Hygric properties

6.1.1 Moisture storage: sorption isotherm

Sorption isotherm relates the equilibrium moisture content of the material to the ambient relative humidity for a given temperature. From dry state to humid state, the water uptake occurs following three stages. Firstly, molecules of water are adsorbed on the internal pore wall surfaces forming a monolayer: this is the monomolecular adsorption. Then water molecules adhere to the monolayer: this is the polymolecular adsorption. Finally, molecules of water lead to a liquid bridge and fill the pore with the formation of liquid menisci: this is the capillary condensation. Depending on the porous structure of the material, these phenomena may occur successively or simultaneously (the first and the following layers are thus adsorbed simultaneously). Besides, a hysteresis may appear between adsorption and desorption branches. This hysteresis is often explained qualitatively by capillary condensation, by existence of ink-bottle shaped pores or, more generally, interconnected pores spaces [Naono and Hakuman, 1993]. The IUPAC gives a classification of physisorption isotherms in six types with reference to pore size and of hysteresis loops in four types related with pore structures [IUPAC, 1986]. Sorption isotherms can be measured according to continuous methods (under quasi-equilibrium) or discontinuous methods (at successive stages). Several models have been developed to describe sorption curve. The GAB model is often met as, despite it is valid when there is no capillary condensation; it is convenient to fit experimental adsorption data all over the relative humidity range [Guggenheim, 1966] [Anderson, 1946] [Anderson and Hall, 1948] [de Boer, 1953].

Bio-aggregate based building materials are strongly hygroscopic. Their water uptake is much higher than in other building materials, as illustrated Figure 6.1 by comparing hemp concrete with Aerated Autoclaved Concrete and with Vertical Perforated Bricks [Amziane and Arnaud, 2013]. As well for wood concrete as for hemp concretes, the water content at equilibrium at very high relative humidity (resp. 99.9 and 95 %RH) is much lower than the water content at saturation [Bouguerra et al., 1999][de Bruijn and Johansson, 2013]. This is linked to the macroporosity due to the bio-based aggregate. Moreover, their sorption curves show hysteresis which extends all over the range of relative humidity, as well for wood concrete as for hemp concretes (Figure 6.2 and Figure 6.3) [Bouguerra et al., 1999] [Cerezo, 2005][Chamoin, 2013][Collet, 2004][Collet et al., 2008][Collet et al., 2013].
Comparing sorption curve of hemp concrete with sorption curve of hemp shiv [Zaknoune, 2011], Collet et al. [Collet et al., 2013] underline that hemp concrete shows lower sorption curve than hemp shiv but exhibits larger hysteresis. So, the porosity of the binder widely influences the hygroscopic behavior of the mix. Actually, the binder develops specific surface area and is the place of capillary condensation in the inter-particle pores. The kind of binder slightly impacts the sorption curve. In [Chamoin, 2013], substituting lime-based binder for calcium sulphate-based binder leads to similar values of water content as the reference material, excepted at highest relative humidity (>80 %RH), where capillary condensation takes place. The hysteresis is also slightly impacted, but the effect depends on the calcium sulphate-based binder ratio. When the calcium sulphate-ratio increases, the hysteresis firstly increases and then decreases.

![Figure 6.1 Adsorption isotherms of materials (HLC : Hemp-Lime Concrete, AAC: Aerated Autoclaved Concrete, VPB: vertical perforated bricks) [Amziane and Ar-naud, 2013]](image1)

![Figure 6.2 Sorption isotherms of Hemp Concretes with increasing substitution of lime-based binder for calcium sulphate-based binder (F1: 1/3 sulphate-based binder + 2/3 lime-based binder; F2: 1/2 + 1/2; F3: 2/3 + 1/3) [Chamoin, 2013]](image2)
It is shown in [Collet et al., 2013] and in [Chamoin, 2013] that the fact that hemp shiv is defibered or not (ie fibered) does not impact significantly the sorption curves of respectively hemp concrete for the two considered kinds of binders. As for the binder, slight differences appear for highest values of relative humidity (>80 %RH).

Finally, as well for wood concrete as for hemp concrete, an increase in bioaggregate to binder ratio induces higher values of water content, particularly for highest relative humidity. This is correlated, on the one hand, to higher polymolecular adsorption and, on the other hand, to capillary condensation. Actually, Bouguerra et al. remind that raising the aggregate to binder ratio increases macroporosity and the specific surface area is thus the highest for highest aggregate to binder ratio [Bouguerra et al., 1999]. Collet et al. point out that, in the range of relative humidity 81–97%RH, the capillary condensation occurs in pores of width from 0.005 to 0.040 µm. This size of pore is met in the skin of the cell wall of hemp shiv [Collet et al., 2013]. Increasing the hemp to binder ratio increases these phenomena.

![Figure 6.3 Sorption-desorption isotherms of various mixtures obtained by substituting clay with wood aggregates [Bouguerra et al., 1999]](image)

6.1.2 *Moisture transfer: water vapor permeability, capillarity, moisture diffusivity*

Moisture transfer takes place under vapor or/and liquid transport. The driving force for vapor diffusion is the vapor pressure gradient. The liquid transport occurs by surface diffusion or capillary flow, in both cases the driving force is the capillary pressure.
Water vapor permeability characterizes the ability of a material to transfer moisture under a vapor pressure gradient once the steady state is reached. The commonly called “vapor permeability” includes (i) vapor transfer by diffusion (transport by collision of water molecules with each other), (ii) vapor transfer by effusion (transport by collision of water molecules with walls of pores) and (iii) liquid transfer (connected with capillary condensation). For hygroscopic materials, the water vapor permeability increases with the water content of the material. The measurement of water vapor permeability is often performed following the well-known cup method.

The mainly open high porosity of bio-aggregate based building material gives them high moisture vapor permeability (ie low water vapor diffusion resistance). The water vapor diffusion resistance, at dry point, is 15 for wood shaving concrete [Amziane and Arnaud, 2013], it ranges from 5 to 12 for hemp concrete [Collet, 2004][Evrard, 2008][Walker and Pavia, 2014] while it is equal to 130 for solid concrete, 50 for light weight aggregate (natural pumice stone) concrete, and 10 for aerated autoclaved concrete [ThU. 2005]. Besides, for hygroscopic materials, such as bio-aggregate based building materials, the water vapor permeability is a strong function of the local relative humidity. Figure 6.4 gives the variation of water vapor permeability with relative humidity for two hemp concretes [Collet et al., 2013] and for clay brick and concrete brick [Kumaran et al., 2002]. This figure highlights the high water vapor permeability of hemp concrete and its increase with relative humidity.

![Figure 6.4 Variation of moisture permeability versus ambient relative humidity for several building material: sprayed and precast hemp concrete [Collet et al., 2013], clay brick and concrete brick [Kumaran et al., 2002].](https://example.com/figure6.4.png)

As well as in [Chamoin, 2013] as in [Walker and Pavia, 2014], the type of binder does not have a significant effect on the water vapor permeability of hemp concrete. In [Chamoin, 2013] hemp concretes with fibered hemp shiv show simi-
lar values as hemp concrete with defibered hemp shiv in the hygroscopic domain. For highest values of relative humidity, fibered hemp shiv leads to lower values than defibered hemp shiv. The macropores between hemp particles have a greater influence on the water vapor permeability than the micropores in binder. However, the use of water retainer in [Walker and Pavia, 2014] reduces the water vapor permeability of hemp concrete.

The capillary action characterizes the spontaneous flow of a liquid into a porous structure. The water absorption coefficient gives the amount of water absorbed per unit area as function of the square root of time.

The water absorption coefficient by capillarity (free water uptake) ranges from 2.40 to 4.42 kg/(m²·h½) for hemp concretes [Walker and Pavia, 2014] [Evrard, 2008] [Evrard and de Herde, 2010]. A higher value of water absorption coefficient (9 kg/(m²·h½)) is found in [de Bruijn et al., 2009] for higher density of hemp concrete. These values are in the range of values found in [Nielsen, 1976] where the water absorption coefficient are 2.52 kg/(m²·h½) for sand-lime brick, 4.92 kg/(m²·h½) for cellular concrete, 10.5 and 13.98 kg/(m²·h½) for brick with respective density of 1775 and 2025 kg/m³. Bouguerra et al. observe by Magnetic Resonance Imaging the nonsorption effect of wood aggregates on the capillary absorption of the wood composite. The macrostructure of wood aggregate, embedded in a clay-cement matrix which shows essentially micropores, tend to slow down the capillary invasion in the material. Finally, the presence of wood aggregates leads to a significant reduction in the sorptivity [Bouguerra et al., 1999].

The moisture diffusivity of a material characterizes the rate of change of its moisture content under transient moisture evolutions. De Vries has shown that the variation of moisture diffusivity versus water content evolves according to three phenomena [de Vries, 1958](Figure 6.5): (i) for low water content (u < uᵢ), moisture transfer is essentially due to vapor transport (diffusion and effusion), the condensed phase exists in the form of an adsorbed film or in small islands of water; (ii) when water content increases, small islands of water increase in number and in size, the area for vapor flux decreases and moisture transfer occurs by mechanisms of condensation and evaporation at vapor–liquid interfaces, as soon as the continuity of the liquid phase is reached (u = uᵢ) the liquid transfer increases; (iii) then, for high water content, liquid transfer is predominant.
The isothermal moisture diffusivity calculated from the derivative of the sorption curve and from the vapor permeability ranges from 10^{-10} to 10^{-7} m².s⁻¹ [Collet, 2004][Amziane and Arnaud, 2013][Collet et al., 2013]. For comparison, the value given by Peuhkuri [Peuhkuri, 2003] for aerated autoclaved concrete is 8.10^{-9} m².s⁻¹ for relative humidity ranging between 40 and 60%. However, as underline in [Rode, 2005], there may be some discrepancy between the basic material properties depending on whether they have been determined under steady state or dynamic conditions. It is shown in [Collet and Pretot, 2012] that the moisture diffusivity is slightly higher when it is calculated from steady-state data than when it is from dynamic measurements. It is suggested that it is due to a non-fickian behavior of sprayed hemp concrete. New method to determine the mass diffusivity in materials, was developed by Perré et al. [Perré et al., 2015]. This method allows non-Fickian behavior to be detected, and can still be used in such case with dual-scale model in the identification procedure. No data are found with such method on bio-aggregate based building materials.

The moisture diffusivity calculated from capillary test ranges from 10^{-10} to 10^{-8} m².s⁻¹ for wood concrete [Bouguerra et al., 1999] and from 10^{-10} to 10^{-8} m².s⁻¹ for cellular concrete [Kumaran et al., 2002] (Figure 6.6).

In line with previous comments, the formulation of binder does not have a significant effect on moisture diffusivity. It is shown in [Chamoin, 2013] that by increasing the substitution rate of lime-based binder for calcium sulphate-based binder, the moisture diffusivity is slightly but not significantly amplified (Figure 6.7).

Moreover, [Bouguerra et al., 1999] underline that the wood aggregates do not seem to participate to the liquid phase transfer because of their macroporous structure. Thus, the liquid transfer occurs mainly in the microporous matrix.
Figure 6.6 Moisture diffusivity of materials from capillary test - top: clay-cement matrix and clay-cement-30% of wood aggregates composite [Bouguerra et al., 1999]; bottom: cellular concrete [Kumaran et al., 2002].

Figure 6.7 Moisture diffusivity of hemp concrete with increasing substitution of lime-based binder for sulphate-based binder (F1: 1/3 sulphate-based binder + 2/3 lime-based binder; F2: 1/2 + 1/2; F3: 2/3 + 1/3) [Chamoin, 2013]
6.1.3 Moisture buffering: moisture buffer value

The moisture buffer value MBV quantifies the moisture buffering ability of a material. It is measured according to the method defined in the NORDTEST project. This project defines the practical moisture buffer value of materials, measured under dynamic conditions [Rode, 2005]. This value relates the amount of moisture uptake (and release), per open surface area, under daily cyclic variation of relative humidity. This value is mainly but not only a property of the material as the mass transfer coefficient at the boundary plays a role. Though, for many materials, the internal resistance to moisture transport is significantly larger than the convective surface resistance.

The moisture buffering quality of hemp concretes was studied by several authors [Evrard, 2006][Tran Le, 2010][Collet and Pretot, 2012][Collet et al., 2013][Dubois et al., 2012][Dubois et al., 2013][Latif et al., 2015]. The experimental investigations are generally performed following the Nordtest protocol. It is shown that hemp concrete is an excellent hygric regulator with moisture buffer values globally higher than 2 g/(m².%RH). Figure 6.8 summarizes results found in literature for usual building materials and for hemp concretes. According to the NORDTEST project classification, the moisture buffering capacity of concrete is limited (< 0.5 g/(m².%RH)) while it is moderate (< 1 g/(m².%RH)) for gypsum, good for cellular concrete and wood fibreboard (< 2 g/(m².%RH)) and finally excellent (> 2 g/(m².%RH)) for cellulose insulation and hemp concretes. Latif et al. [Latif et al., 2015] found higher values of MBV for hemp concrete (4.3 g/(m².%RH)). This higher value is due to higher air velocity which increases mass transfer at the surface of the material.
Figure 6.8 Review of moisture buffer value of building materials: concrete and cellular concrete from [Rode, 2005], gypsum plaster, wood fibreboard and cellulose insulation from [Janssen and Roels, 2008], sprayed hemp concrete from [Collet and Pretot, 2012], lime-hemp concrete from [Dubois et al., 2012], hemp lime concretes with increasing substitution of lime-based binder for sulphate-based binder (F1: 1/3 sulphate-based binder + 2/3 lime-based binder; F2: 1/2 + 1/2; F3: 2/3 + 1/3) [Collet and Pretot, 2012b]

The composition and the manufacturing method impact the moisture buffering ability of hemp concretes [Collet et al., 2013]. It is shown in [Collet and Pretot, 2012b] that the composition of binder slightly affects the MBV. Actually, the MBV of hemp concrete made of mix binder increases with increasing substitution of lime-based binder for calcium sulphate-based binder. This phenomenon is correlated with an increase in moisture effusivity.

Finally, it should be underlined that this ability is impacted when hemp concrete is coated. Collet and Pretot [Collet and Pretot, 2012c] show that the MBV is more or less reduced depending on the kind of coating added on its surface. For closed coating (sand-lime plaster), the MBV is nearly half the value of neck hemp concrete (respectively 1.08 and 2.14 g/(m².%RH)). For open coating (hemp-lime plaster), the value is much less reduced (from 2.14 to 1.82 g/(m².%RH). Similar results are found in [Latif et al., 2015]. The wall assemblies with breather membrane show the lower moisture buffer potential.

Dubois and Lebeau [Dubois and Lebeau, 2013] performed inverse modelling from MBV test in order to estimate hygric parameters such as vapor permeability and hygric capacity. Boundary and initial conditions are also optimized: vapor diffusion resistance factor at exchange surface and initial equilibrium relative humidity in the specimen. It is shown that the vapor resistance factor of the material (or
its vapor permeability) and its moisture capacity are strongly correlated. Actually, these two parameters can be combined in one: the moisture diffusivity.

6.2 Thermal properties

6.2.1 Thermal conductivity

Thermal conductivity characterizes the ability of a material to conduct heat. It quantifies the quantity of heat transferred, under steady state, through a unit thickness in a direction normal to a surface of unit area, due to a unit temperature gradient. In porous media, heat transfer can take place by three modes such as conduction, convection and radiation. Furthermore, hygroscopic phenomena are also associated with energy transfer.

Several methods are used to measure thermal properties of building materials. Steady-state methods like guarded hot plate, heat flow meter and guarded hot boxes and transient methods like hot wire and line source give thermal conductivity value. Other transient methods such as flash method, transient plane source or hot disk allow simultaneous measurement of conductivity and diffusivity and/or heat capacity. Small discrepancies may appear between the results from these different methods.

Several authors use the self-consistent homogenization to compute thermal conductivity of bio-aggregate based building materials. This homogenization is performed at dry state versus the formulation and the density of the material or at humid state, taking into account the water content of the material [Arnaud, 2000] [Collet, 2004] [Cerezo, 2005] [Bederina et al., 2007].

6.2.1.1 Thermal conductivity of bio-aggregate based building materials

The Figure 6.9 gives examples of thermal conductivity versus density found in literature for several bio-aggregate based building materials BBM (made of wood aggregate or hemp shiv) [Agoua et al., 2013], [Aigbomian and Fan, 2013], [Al Rim et al., 1999], [Bederina et al., 2007], [Pretot et al., 2009], [Sassoni et al., 2014], [Taoukil et al., 2013], [Walker and Pavia, 2014], [Magniort et al., 2012]. The thermal conductivity of BBM ranges from very low (about 0.04 W.m⁻¹.K⁻¹), allowing their use as insulating material, to medium (1 to 2 W.m⁻¹.K⁻¹). In a general way, BBM are lightweight materials and therefore good, not exceptional, thermal insulator; with thermal conductivity about 0.1 to 0.3 W.m⁻¹.K⁻¹. Their thermal conductivity is equivalent to that of other building materials with similar density. Actually, cellular concrete shows a thermal conductivity of 0.115 W.m⁻¹.
for a density of 400 kg.m\(^{-3}\) (resp. 0.162 W.m\(^{-1}.K^{-1}\) for 600 kg.m\(^{-3}\)) [Gawin et al., 2004].

Figure 6.9 Thermal conductivity of bio aggregate based building composites (made of wood or hemp shiv)

Thermal conductivity of bio aggregate based building materials is thus related with density. It also depends on several parameters such as formulation (binder, aggregate, aggregate to binder ratio...), production method and water content. The density is induced by the formulation and the production method. The effect of the formulation data will be detailed further.

Cerezo gives a linear relationship between thermal conductivity and density of hemp concrete [Cerezo, 2005] (Figure 6.10). This curve fit with high accuracy the experimental data for density ranging from 300 to 520 kg.m\(^{-3}\). Actually these points correspond to hemp concrete with similar formulation. For higher and lower densities, the hemp-binder-water ratios differ. For a given formulation Cerezo models the variation of thermal conductivity with density from self-consistent homogenization [Cerezo, 2005](Figure 6.11). There is a high correlation between experimental data and modeling. Similar results are found by Collet and Pretot on sprayed hemp concrete [Collet and Pretot, 2014]. The variation of thermal conductivity with density is measured and modeled with self-consistent homogenization as the spraying process induces a variation of density [Elföldy et al., 2008]. For a given formulation (the one used to build wall), the variation of thermal conductivity versus density fit a linear regression curve. At dry state, the thermal conductivity rises by 109% while density increases from 250 to 600 kg.m\(^{-3}\).
Figure 6.10 Evolution of thermal conductivity of hemp concrete depending on density [Cerezo, 2005]

Figure 6.11 Comparison of experimental data to self-consistent homogenization of thermal conductivity [Cerezo, 2005]

6.2.1.2 Effect of formulation and manufacturing method on thermal conductivity of bio aggregate based building materials

The formulation embeds several data: the type of binder, the type of aggregate, the aggregate to binder ratio, the water to binder ratio and the use of water retainer. The water to binder ratio is generally adjusted to ensure a good workability of the fresh product in connection with the mixing and manufacturing method. So, the effect of formulation and manufacturing method cannot be studied separately.
Binder

Thermal conductivity of bio-aggregate based building materials is significantly dependent on the binder used in the formulation.

Actually, the thermal conductivity of binders themselves is dependent on the type of binder, the proportion of the binders in case of mixture, and the water to binder ratio. Stefanidou et al. [Stefanidou et al., 2010] used six different binders (traditional binders such as lime, natural pozzolans, brick dust, and white cement) to produce 15 pastes. The thermal conductivities of studied materials range form 0.16 (mixture of air lime and pozzolan) to 0.39 W.m⁻¹.K⁻¹ (white cement). They show that, with similar proportion by mass, traditional materials such as lime are less conductive than modern materials like cements. They also underline that adding white cement increases the thermal conductivity of mixtures and that adding pozzolanic materials reduces the thermal conductivity in comparison with pure lime. Finally, they also show that an increase in the water to binder ratio in the mixture of binder increases the porosity and thus reduces the thermal conductivity of the binder.

Furthermore, the physico-chemical interaction occurring between the bio-aggregate and the binder affects the microstructure of the composite and thus its thermal conductivity. Gourlay and Arnaud [Gourlay and Arnaud, 2010] give the thermal conductivity of hemp concretes made with three kinds of binder. They show that hemp concretes made with cement based binder are less conductive than hemp concretes made of lime based binder (respective thermal conductivities of 0.06 and 0.08 W.m⁻¹.K⁻¹). They underline that, with the same hemp-binder-water ratio, the density of hemp concretes is lower with cement based binder than with lime-based binder (resp. 297 / 393 kg.m⁻³) even if the density of cement-based binder is higher than the density of lime-based binder (resp. 1166 / 843 kg.m⁻³). They conclude that the physico-chemical interaction between hemp aggregates and binder affects the microstructure of the material by increasing its porosity and this induces a decrease in thermal conductivity. Walker and Pavia [Walker and Pavia, 2014] also show that increasing the binder’s hydraulic content in hemp concretes slightly reduces thermal conductivity. The decrease in thermal conductivity occurs simultaneously with a decrease in density (Figure 6.12).

Bio-aggregate

Thermal conductivity of bio-aggregate based building materials also depends on the characteristics of the bio-aggregate. The lower the thermal conductivity of inclusions, the more the material is insulating. In addition, the increase in porosity decreases the density of the composite and consequently its thermal conductivity. The characteristics of bio-aggregate rely on the kind of material, its origin, its species, and its processing (treatment, separation of woody core from fiber, particle size...).

The morphological characteristics of bio-aggregates depend on their growing conditions (land, weather...). Stevulova et al. compared lightweight composites made with technical hemp (cannabis sativa) from two origins [Stevulova et al., 2013]. They show that Hungarian hemp leads to higher values of thermal conductivity of concrete than Netherlands hemp (respective thermal conductivity: 0.111 and 0.069 W.m\(^{-1}\).K\(^{-1}\) for same components ratios), while giving higher strength parameter. They suggest that this fact is probably due to creating a stronger structure during the growing, with smaller pores.

For the same kind of material, the species also impact the characteristics of the bio-aggregate. Agoua et al. [Agoua et al., 2013] investigate composites made of sawdust of recycled wood and glue from polystyrene of recuperation. Two species of wood, several particle sizes, and two wood-glue ratios are considered. They show that, whatever particle sizes and glue content, one species of wood (Kaya
senegalensis) systematically leads to slightly higher conductivity of the composite than the other species (Pterocarpus Erinaceus) (respective mean values: $0.263 \pm 0.022 / 0.242 \pm 0.022 \text{ W.m}^{-1}\text{K}^{-1}$).

Depending on the kind of raw material, the processing may include a separation of fiber from woody core or not. Nguyen [Nguyen, 2010] compares compacted hemp concretes made with fibered and defibered hemp shiv. He shows that, for similar formulation (kind of binder and hemp-binder ratio), the fibered hemp shiv leads to lower conductivity of the composite than defibered hemp shiv. According to the author, the fibers induce a higher inter-particular porosity, for the same density of the composite, leading to lower thermal conductivity. It would be interesting to corroborate this result for other processing methods.

The particle size distribution, resulting from the processing, also impacts the thermal conductivity of composites. Agoua et al. show that the more the composites contain thin elements of sawdust of wood, the more they drive heat [Agoua et al., 2013]. Similar results are found with hemp-based materials. Stevulova et al. show that decreasing the mean particle length in hemp composites induces a stronger structure with smaller pores and also leads to higher thermal conductivity [Stevulova et al., 2013]. Pretot et al. compare two hemp-lime plasters [Pretot et al., 2009]. The hemp with the finest particle size distribution leads to slightly higher thermal conductivity (0.227 vs 0.193 W.m$^{-1}\text{K}^{-1}$: +17.6%), simultaneously with higher density (809 vs 692 kg.m$^{-3}$: +16.9%).

Bio aggregate to binder ratio

Bio aggregate to binder ratio impacts the thermal properties of bio-based building materials. Studies performed on wood-aggregate based composites and on hemp-aggregate based composites show that by increasing the bio-aggregate to binder ratio, the thermal conductivity of the composite decreases [Agoua et al., 2013] [Al Rim et al., 1999] [Bederina et al., 2007] [Benfratello et al., 2013] [Bouguerra, 1999] [Collet and Pretot, 2014] [de Brujin and Johansson, 2013] [Ledhem et al., 2000] [Taoukil et al., 2013]. The increase in bio-aggregate to binder ratio induces a decrease in density of the composite due to a low density of the bio-aggregate. Furthermore the bio-aggregate induces porosity in the matrix which appears to be more porous when the aggregate ratio increases [Al Rim et al., 1999]. Bederina et al. underline that the decrease in thermal conductivity is not linearly proportional to the increase of bio-aggregate in wood-based composite [Bederina et al., 2007] (Figure 6.13). Similar results are found on hemp concretes [Benfratello et al., 2013][Collet and Pretot, 2014].
Anisotropy

The geometry and the capillary structure of bio-aggregate make them anisotropic. It is shown in [Carré and Le Gall, 1990] and in [Suleiman et al., 1999] that the longitudinal thermal conductivity of wood (parallel to capillaries network) is higher than the transversal one.

Depending on the production method, bio-aggregate based building materials can also show anisotropy. Nguyen studied the effect of anisotropy on thermal conductivity of compacted hemp concretes [Nguyen, 2010]. He shows that, depending on the formulation, the thermal conductivity in longitudinal axis was 1.2 to 1.8 higher than the thermal conductivity in the transversal axis. Such results were also found in [Pierre et al., 2013] where the longitudinal thermal conductivity was higher than the transversal conductivity of hemp concrete and in [Dinh et al., 2015] where the ratio between thermal conductivity measured according to parallel direction and perpendicular direction of compaction was from 1.13 to 1.19 for dry hempcretes and from 1.15 to 1.17 for humid hempcretes.

6.2.1.3 Effect of water content on thermal properties of bio-aggregate based building materials

The hygroscopicity of bio-aggregate based building materials impacts their thermal properties.

Actually, an increase in water content induces an increase in thermal conductivity, as water shows much higher thermal conductivity than air ($\lambda_{\text{water}} = 0.6$; $\lambda_{\text{air}} = 0.026$ W.m$^{-1}$.K$^{-1}$). This increase is more or less important, depending on the
density and on the porosity of the material. For wood concrete, the thermal conductivity increases rapidly with water content. The thermal conductivity at saturation is two to three times higher than the value at dry state [Taoukil et al., 2013]. It can reach five times this value in [Bouguerra, 1999]. For hemp-based materials, thermal conductivity also increases with water content. In [Amziane and Arnaud, 2013], the variation of thermal conductivity with water content is modeled by double homogenization for two hemp concretes. For the HLC1 hemp concrete, thermal conductivity is related to water content following:

\[\lambda = 0.105 + 0.035w \]

[Eq. 6.1]

With \(\lambda \) the thermal conductivity (W.m\(^{-1}\).K\(^{-1}\)) and \(w \) the mass water content (%).

The values from this equation are in line with experimental data obtained by Cerezo [Cerezo, 2005] and are also consistent with the results from [Collet, 2004] who considers a three phase model with air, water and solid phase. Taking into account adsorption/desorption isotherm, the thermal conductivity rises by 30% when the material has been left in humid environment (75%RH) [Amziane and Arnaud, 2013]. In [Collet and Pretot, 2014], it is underlined that the ambient humidity impacts more or less the thermal conductivity of hemp concrete, as, depending on their formulation, they are more or less hygroscopic. From dry to humid state (90%RH), the thermal conductivity of hemp concrete rises by 25 % for wall formulation with low density; while, in the same range of relative humidity, it increases by 11% for floor formulation (water content at 90%RH about 0.08 g.g\(^{-1}\)). Finally, for a given formulation, even if the impact of moisture content is lower than the impact of density (Figure 6.14), it is not negligible.
6.2.2 Heat capacity and thermal diffusivity

Specific heat capacity and volumetric heat capacity characterize the ability of a material to store heat. The specific heat capacity is the amount of heat per unit mass required to raise the temperature by one degree Celsius while the volumetric heat capacity is related to a unit of volume.

Thermal diffusivity describes the rate at which heat flows through a material. Thermal diffusivity is related to thermal conductivity, density and specific heat capacity according:

\[a = \frac{\lambda}{\rho C_p} \]

[Eq. 6.2]

With \(a \) the thermal diffusivity (m².s⁻¹), \(\lambda \) the thermal conductivity (W.m⁻¹.K⁻¹), \(\rho \) the density (kg.m⁻³) and \(C_p \) the specific heat capacity (J.kg⁻¹.K⁻¹).

Thermal diffusivity and/or heat capacity are measured with transient methods as flash method, transient plane source or hot disk. Specific heat capacity can also be measured with calorimeter or DSC.
6.2.2.1 Heat capacity and thermal diffusivity of bio-aggregate based building materials

The specific heat capacity of bio-aggregate based building materials is in the same range as the specific heat capacity of usual building materials. For wood concrete, Taoukil et al. estimate the thermal diffusivity for several wood shaving ratios [Taoukil et al., 2013]. The specific heat capacity calculated from these measures ranges from 640 to 1490 J.kg\(^{-1}\).K\(^{-1}\), depending on wood shaving ratio. For hemp concrete, the study of Walker and Pavia with six kinds of binder gives specific heat capacities ranging from 1240 to 1350 J.kg\(^{-1}\).K\(^{-1}\) [Walker and Pavia, 2014]. The specific heat capacity of sprayed hemp concrete, calculated from the thermal diffusivity at dry point at 20°C in [Pierre et al., 2013], ranges from 650 to 870 J.kg\(^{-1}\).K\(^{-1}\). There is a high discrepancy between these results that may be linked with the measurement methods. Actually, one should underline that the measurement of thermal diffusivity of such materials appears difficult. Taoukil et al. underline that the value depends on the counting model used to estimate the thermal diffusivity from experimental thermogramm [Taoukil et al., 2013]. On the other hand, the use of calorimetry may also be distorted by chemical reaction producing heat during the measurement.

6.2.2.2 Effect of formulation and manufacturing method on heat capacity and thermal diffusivity of bio aggregate based building materials

Like thermal conductivity, heat capacity and thermal diffusivity are impacted by formulation of bio-aggregate based building materials.

The effect of the kind of binder is studied in [Walker and Pavia, 2014]. They show that increasing the binder’s hydraulic content in hemp concretes slightly increases heat capacity, while it reduces thermal conductivity. More, in their study the use of water retainers increases both heat capacity and conductivity.

The effect of bio-aggregate to binder ratio is investigated on hemp concrete and on wood concrete. De Bruijn and Johansson [de Bruijn and Johansson, 2013] find that the amount of hemp in hemp lime concrete has no significant effect on their thermal diffusivity as the measured values overlap. However, they conclude that a larger amount of hemp in hemp lime concrete leads to better thermal properties, especially for wet conditions, with lower thermal conductivity and lower specific heat capacity. Taoukil et al. estimate the thermal diffusivity of wood-concrete for several wood shaving ratios [Taoukil et al., 2013]. It is highlighted that increasing the wood-shaving content in composite decreases its thermal diffusivity, in link with the decrease in thermal conductivity. Globally, increasing the bio-aggregate amount in the composite allows improving its thermal insulating performance.
6.2.2.3 Effect of water content on heat capacity and thermal diffusivity of bio aggregate based building materials

Regarding the variation of thermal diffusivity with water content, the study performed by de Bruijn and Johansson on two hemp-lime concretes conditioned to 15% and 65%RH, does not allow concluding [de Bruijn and Johansson, 2013]. Taoukil et al. highlight that a maximum value, for given water content, can be observed on wood-concrete [Taoukil et al., 2013]. This is explained by the fact that in a first step, the thermal conductivity increases faster than volumetric heat capacity, inducing an increase in thermal diffusivity. Then, the thermal conductivity increases slower than volumetric heat capacity and thermal diffusivity thus decreases.

Evrard [Evrard, 2008] uses the thermal balance to calculate the variation of the specific heat capacity of hemp concrete with water content.

\[
C(w) = \frac{(\rho_0 \times C_0 + w \times C_w)}{\rho}
\]

[Eq. 6.3]

With: \(\rho \) the density (kg.m\(^{-3}\)); \(C \) the specific heat capacity (J.kg\(^{-1}\).K\(^{-1}\)); subscript \(0 \) : at dry state; \(w \) the water content (kg.kg\(^{-1}\)); \(C_w \) the specific heat capacity of water stored in the porous structure (J.kg\(^{-1}\).K\(^{-1}\)).

The variation of specific heat capacity with ambient relative humidity is thus calculated from this relationship and from sorption curves. Figure 6.15 illustrates the direct increase from thermal capacity of water stored.

![Figure 6.15 Evolution of thermal capacity of Hemp Lime Material - wall in moist state [Evrard, 2008]](Unedited Version)
6.3 Concluding remarks on hygrothermal behavior of bio-aggregate based building materials

The hygienic and thermal properties of bio-aggregate based building materials give them a particular hygrothermal behavior which allows reducing energy demand of building while maintaining indoor relative humidity [Tran Le et al., 2010] [Evrard and de Herde, 2010].

It was shown in [Evrard and de Herde, 2010] and in [Lawrence et al., 2013] that hemp concrete wall perform better than traditional wall assemblies on phase shift point of view. For example, in the simulation of [Evrard and de Herde, 2010] the phase shift was 15 h in the hemp concrete wall while it was 5 h in the mineral wool wall.

These performances are correlated with hygric behavior of hemp concrete. Actually, Lawrence et al. [Lawrence et al., 2013] underline that, after a sudden drop in temperature on one side of the experimental wall, the steady state is reached at approximately 240 h while it is reached within 72 h in simulations ignoring the effects of relative humidity. Thus, relative humidity has a strong effect on the hygrothermal behavior of the wall. Pretot and Collet [Pretot and Collet, 2012] studied the response of a hemp concrete test wall to several hygrothermal solicitations. They show that (i) under isothermal conditions with vapor pressure gradient, homogeneous vapor diffusion occurs; (ii) under constant vapor pressure with a decrease of ambient temperature, huge variations of vapor pressure are observed through the wall, in correlation with adsorption-desorption and/or condensation-evaporation phenomena. The experimental study reported by Arnaud, Samri and Gourlay in [Amziane and Arnaud, 2013] shows that an internal source (or well) of heat and/or the presence of another flow of heat (notably by convection) exist in hemp concrete and directly impact the heat balance equation.

Numerical studies at building scale show that hemp concrete allows high hygrothermal performances of building. Tran Le et al. compare hemp concrete behaviour to that of cellular concrete [Tran le et al., 2010]. They found that hemp concrete induces a reduction ranging from 15% to 45% in energy consumption, depending on ventilation strategy. More, Maalouf et al. compare hemp concrete with other building materials [Maalouf et al., 2014]. They show that hemp concrete has the lowest thermal diffusivity and the highest time lag which means that it can better reduce the propagation of outdoor weather conditions through building envelope. However, these authors also show that, in South France, there is a risk of indoor superheating due to low effusivity of hemp concrete.

Finally, to take into account the full range of hygrothermal performance of bio-aggregate based building materials it is necessary to consider hygrothermal dynamic behavior, not only steady-state characteristics like thermal transmittance of wall (U-value). Actually, mass transfer has a significant impact on the heat trans-
fer in bio-aggregate based building materials, in correlation with latent heat of phase-change or sorption heat. It is thus necessary to accurately model mass transfer taking into account the sorption hysteresis of bio-aggregate based building materials. Currently numerical model are developed following this objective [Aït Oumeziane et al., 2014]. Besides, it is necessary to develop new experimental benches to highlight the contribution of hygric behavior in the whole energetic performance of these materials. More, investigations are needed to develop measurement methods of thermal diffusivity and/or heat capacity of bio-aggregate based building material as usual methods are not well adapted.

References

[Collet and Pretot, 2012b] F. Collet, S. Pretot, Variation de la capacité hydrique tampon de bétons de chanvre en fonction de la formulation, Ecobat Sciences et techniques 1ère édition, Paris, 7 et 8 mars 2012, communication orale.

Chapter 7. Bio-aggregate based building materials exposed to fire.

Christophe LANOS

Laboratoire de Génie Civil et Génie Mécanique de Rennes, équipe Matériaux-Thermo-Rhéologie, Université de Rennes 1, France
IUT Génie Civil Construction Durable - 3, rue du Clos Courtel- BP 90422 -35704 Rennes Cedex – France - christophe.lanos@univ-rennes1.fr

Abstract. This chapter reports the state of the art of several investigations on behaviour of bio-aggregate based building materials exposed to fire. Discrepancies between fire reaction and fire resistance is highlighted in this chapter. Various results of fire reaction test performed on bio based materials are presented. Bio-aggregates are often in Class F while concretes range in class B1. In the case of fire performances, limited tests are performed and reported in the literature. Such test must be performed on wall or part of building to give the more realistic overview of the behaviour of building structure exposed to standard fire. In some of presented case studies, render and plaster play a key role in the fire resistance. EI 90 fire resistance appeared to be accessible with conventional technologies.

7.1 Introduction

A distinction appeared between the behaviours of fire reaction of a material or a building product and of fire resistance of a building structure or element (wall, slab...).

The construction works must be designed and build in such a way, that in the event of an outbreak of fire:

– the generation and spread of fire and smoke within the works are limited,
– the spread of fire to neighbour construction works is limited,
– the load bearing resistance of the construction can be assumed for a specified period of time,
– the occupants can leave the works or can be rescued by other means,
– the safety of rescue teams is taken into consideration.

Construction products are tested in respect of their reaction to fire, which is important in determining how a fire is likely to start and/or how it will develop. These reaction properties are ease of ignition, spread of flame, evolution of smoke
and toxic gases, and heat release rate of the burning material. Many test methods are applicable to evaluate these properties. The product can then be classified in terms of the relevant fire reaction. Test data is often also used in calculations of the spread of fire or for estimation of design fire ratings.

The fire resistance of building elements are evaluated to determine their behaviours when exposed to a particular temperature, normally representing a fire in an enclosed space (a room). Fire resistance is one of several properties of the structure/product, and thus is not simply a property of the specific materials used in the structure or product. Fire resistance is influenced by the properties of the assembled/combined structure or product, and is not a property of the materials themselves. Fire resistance testing can be performed for many different load bearing structures, such as walls and glazed structures, floor/ceiling structures and roofs, beams, pillars, doors, ceiling claddings, ducts, cable penetrations and fire dampers. Test can be performed with both vertical and horizontal exposure. The structure can then be classified into the appropriate fire resistance Class.

It can be important to highlight that safety in the event of fire is one of the six important requirements applicable to the finished building of the Construction Products Directive (89/106/EEC). The main purpose of this directive is to facilitate free movement of construction products throughout the EU. As a consequence, the classification of the fire properties of construction products is based on a EU standard defining fire reaction classes associated to the definition of harmonized test methods and classification rules.

According to EU standards a wide range of Fire Resistance classes of building elements and structures are defined in respect of their fire separation performance, load bearing capacity and smoke tightness. Tests methods are proposed by specific standards depending on the type of the studied structure element.

Other available data concerning fire behaviour of bio-aggregate based building materials complete the one linked to the fire reaction and resistance classification. Many rustic tests of fire direct exposure of formulated material are mentioned in references. The test protocols is even undefined and the evaluation of fire performances is subjective. In addition, the case of some realistic fire test performed on a real scale building or room have to be mentioned.
7.2 Fire reaction

7.2.1 European class of fire reaction

European standards are used as reference to structure the discussion of this state of the art. However, the reported data can be easily transposed regarding other standards. The reaction to fire classification of products is performed according to the terminology of Euroclass system ([EN 13501-1, 2007]).

The Euroclass system for construction products affects mainly surface covering materials, insulation materials, floor coverings, pipe insulation materials and cables. The product groups are all treated in a similar manner. Fire reaction classes are divided into seven main classes: A1, A2, B, C, D, E and F. Additional criteria are taken into account: smoke release (s) and droplet formation (d) with 3 levels (1 for low release to 3 for large release).

Euroclass for insulation materials are:
- A1 (non-combustible material)
- A2-s1, d0 (limited combustibility material)
- B-s1, d0 (Class I surface lining)
- C-s2, d0 (Class II surface lining)
- D-s2, d0 (Class III surface lining)

Euroclass for floor coverings are:
- A1fl (non-combustible floor covering material)
- Cfl -s1 (Class G floor covering for exit routes)
- Dfl -s1 (Class G floor covering for meeting halls and similar)

The conditions for fulfilling the requirements of a particular class can be complicated ([EN 13501-1, 2007]). The main fire reactions associated to each class are described in Table 7.1.

The additional classifications for smoke production corresponds to:
- s3: No limitation of smoke production required,
- s2: The total smoke production as well as the ratio of increase in smoke production are limited,
- s1: More stringent criteria than s2 are satisfied.

The additional classifications for flaming droplets/particles: corresponds to:
- d2: If no performance is declared,
- d1: If no flaming droplets/particles persisting longer than a given time allowed (typically 10 seconds),
– d0: If no flaming droplets/particles occur within 600 s when tested in accordance with EN 13823.

Table 7.1 Main characteristics of fire reaction Euroclass for building products excluding floorings acc. to [EN 13501-1, 2007]

<table>
<thead>
<tr>
<th>Euro-class</th>
<th>Contribution to fire / aspired safety level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Class A1 products will not contribute in any stage of the fire including the fully developed fire. For that reason they are assumed to be capable of satisfying automatically all requirements of all lower classes.</td>
</tr>
<tr>
<td>A2</td>
<td>Satisfying the same criteria as Class B for the SBI-test according to EN 13823. In addition, under conditions of a fully developed fire these products will not significantly contribute to the fire load and fire growth.</td>
</tr>
<tr>
<td>B</td>
<td>As Class C but satisfying more stringent requirements.</td>
</tr>
<tr>
<td>C</td>
<td>As Class D but satisfying more stringent requirements. Additionally under the thermal attack by a single burning item they have limited lateral spread of flame.</td>
</tr>
<tr>
<td>D</td>
<td>Products satisfying criteria for Class E and capable of resisting, for a longer period, a small flame attack without substantial flame spread. In addition, they are also capable of undergoing thermal attack by a single burning item with sufficiently delayed and limited heat release.</td>
</tr>
<tr>
<td>E</td>
<td>Products capable of resisting, for a short period, a small flame attack without substantial flame spread.</td>
</tr>
<tr>
<td>F</td>
<td>Products for which no reaction to fire performances are determined or which cannot be classified in one of the classes A1, A2, B, C, D, E.</td>
</tr>
</tbody>
</table>

7.2.2 Tests methods

Testing for the Euroclass system is performed in accordance with test methods, defined in harmonised European standards. Criteria leading to the classification are described in standards ([NF EN 13 501-1, 2007] + A1 2009). The test methods are summarized in this section. More details of test protocols and classification criteria can be found in references listed in this chapter. The choice of test depends on the expected classification.
7.2.2.1 Non combustibility furnace (test according to [ISO 1182, 2010]) and Calorimeter (test according to [ISO 1716, 2010])

Such tests are used for Euroclass A1 and A2 (non-combustible materials). The mass release during heating of sample or superior calorific value are estimated during tests.

7.2.2.2 Single Burning Item, fire technical testing of building products (Test method [EN 13823, 2013])

Building products, except for flooring materials, are exposed to thermal heat from a gas burner with a heat release rate of 30 kW placed horizontally in a room corner. The sample (1 m x 1.5 m) form the vertical wall upper the burner. The mounting of the sample should be as close to reality as possible. The test time is 21 minutes. The combustion gases are collected through a hood where heat release rate and smoke production are measured. In the test method, the products heat release rate (kW), total heat release (MJ) and smoke production rate (m²/s) are measured. Flame spread and burning droplets/particles are observed visually. This test is usable according to Euroclass A1, A2, B, C, or D according to the European System.

Figure 7.1 Example of FBI test realized on straw wall coated with earth rendering (illustration [cd2e]).

7.2.2.3 Cone Calorimeter (test according to [ISO 5660, 2015])

This test is able to produce results leading to the same classification than obtained with SBI tests.
7.2.2.4 Reaction to fire tests for floorings [ISO 9239, 2010]

The flooring surface test specimen (230 mm x 1050 mm) is placed in a horizontal position below a gas-fired radiant panel inclined at 30° where it is exposed to a defined heat flux. A pilot flame is applied to the hotter end of the specimen. Following ignition, any flame front which develops is noted and a record is made of the progression of the flame front horizontally along the length of the specimen in terms of the time it takes to spread to defined distances. Smoke production during the test is recorded as light transmission in the exhaust stack. All types of flooring can be tested with this method, including wood floor, plastic floor, rubber floor, linoleum floor etc. This test is usable for floorings according to Euroclass A2fl, Bfl, Cfl or Dfl.

7.2.2.5 Reaction to fire tests [ISO 11925-2, 2010]

This direct fire test is quite equivalent to the previous one but the specimen is in vertical position (surface test specimen 90 mm x 250 mm) exposed to direct flame for 15 or 30 s. Droplets formation and velocity of fire propagation are analysed. This test is usable for materials according to Euroclass B, C, D or E.

Figure 7.2 Example straw sample exposed to burner flame (illustration [cd2e])
7.2.3 Euroclass of bio-aggregate based building materials and products

Data results gathered for various bio-aggregate based buildings materials are listed below. It appears that Euroclass of the various tested materials correspond to Class B in the case of straw but classes E or F in the most of cases.

Euroclass of bio-aggregate and bio-aggregate based materials plus others:

<table>
<thead>
<tr>
<th>Bio-aggregates or bio-fibers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep wool</td>
<td>D s3, d0</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Duck feathers</td>
<td>E or F</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Metisse</td>
<td>E s1, d0</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Cellulose wadding</td>
<td>B s2, d0</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Flax</td>
<td>E</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Hemp fibers</td>
<td>E</td>
<td>[SPTech, 2009]</td>
</tr>
<tr>
<td>Hemp shiv</td>
<td>E</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Hemp shiv with bitume</td>
<td>B</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Black expanded cork</td>
<td>B</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Wood fiber soft/hard panel</td>
<td>E</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Fibragglo</td>
<td>B</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Straw</td>
<td>E</td>
<td>[cd2e]</td>
</tr>
<tr>
<td>Straw bale</td>
<td>B</td>
<td>[GMI]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bio-aggregate based materials</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Straw wall with earth render</td>
<td>B s1, d0</td>
<td>[cd2e]</td>
</tr>
<tr>
<td>Straw panel</td>
<td>C</td>
<td>[stramit]</td>
</tr>
<tr>
<td>Hemp concrete block</td>
<td>F</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Hemp concrete</td>
<td>F</td>
<td>[GMI]</td>
</tr>
<tr>
<td>Hemp concrete (floor 600 kg/m³)</td>
<td>Bₜ s1</td>
<td>[CSTB, 2013a]</td>
</tr>
<tr>
<td>Hemp concrete (wall 600 kg/m³)</td>
<td>B s1, d0</td>
<td>[CSTB, 2013b]</td>
</tr>
<tr>
<td>Hemp concrete (wall 330 kg/m³)</td>
<td>B s1, d0</td>
<td>[LNE, 2013a]</td>
</tr>
<tr>
<td>Hemp concrete (roof 220 kg/m³)</td>
<td>B s1, d0</td>
<td>[LNE, 2014]</td>
</tr>
<tr>
<td>Hemp lime render (750 kg/m³)</td>
<td>A₂ s1, d0</td>
<td>[CSTB, 2013b]</td>
</tr>
<tr>
<td>Hemp lime render (935 kg/m³)</td>
<td>A₂ s1, d0</td>
<td>[LNE, 2013b]</td>
</tr>
<tr>
<td>Hemp concrete with lime render</td>
<td>A₂ s1, d0</td>
<td>[CenC]</td>
</tr>
</tbody>
</table>
The listed data are often proposed without indications of samples characteristics as density, thickness, type of coating, thickness of render...

The Euroclass B for straw bale is questioning. Such performances is possibly obtained with a layer of render (earth or lime based coating).

Use of Euroclass E product as hemp, flax and straw in building impose interposition of fire proofing layer. A mineral render or plaster can be used as fire proofing layer. Another way is to increase the fire performances of the product using treatment. As example, coating of bio-based aggregate with a solution of phosphate salt or bore salt act as flame retardant. Introduction of mineral coating around the bio-based aggregate is an efficient method too (lime, cement paste, silica coating…).

In all cases, the density of treated aggregate increased and the product formulation must be adjusted to satisfy to the targeted density, thermal conductivity and mechanical performances.

The example of fireproofing increase of hempwool was carried out by [Glé, 2013]. Initial Euroclass of selected hempwool was Class E for density of 323 kg/m3. After treatment and adjustment of formulation necessary to master the acoustical and thermal properties, the obtained Euroclass was equivalent to Class B s3, d0 with density of 331 kg/m3.

7.3 Fire resistance

7.3.1 Fire resistance classes

The fire resistance is evaluated in fire labs using large scale furnaces. The structure element is exposed to a thermal loading corresponding to a theoretical fire. Different thermal solicitations are defined in standards. Building elements and structures are to be tested and classified in respect of their fire separation performance and smoke tightness according to a system that indicates the properties by a letter - e.g. R, E or I - and an index that indicates the time for which the property is maintained, e.g. RE60. According to standard [EN 13501-2, 2007], a wide range of Fire Resistance classes E, EI, REI is possible. The criteria defining the fire resistance duration are presented in Table 7.2.

The test protocols are proposed in various standards following the type or elements of the tested structure and the fire configuration (horizontal, vertical). The Fire Resistance of sandwich panels or multilayer systems relies on a complex mix of factors including: joint design, installation format, thickness of the sandwich panel, density of the core insulation. The fire resistance must be evaluated for a
wide range of the possible values of each parameter. This requires more than one test to adjust a model.

Table 7.2 Fire resistances classes and associated criteria acc. to [EN 13501-2, 2007]

<table>
<thead>
<tr>
<th>Fire resistance classes</th>
<th>Range of classes</th>
<th>Fire safety level</th>
<th>Failing criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI (integrity, insulation)</td>
<td>EI 15 up to EI 240</td>
<td>Standard</td>
<td>Limited temperature at unexposed metal sheet Average < 140°C Each part < 180°C</td>
</tr>
<tr>
<td>REI (load-bearing capacity, integrity, insulation)</td>
<td>REI 15 up to REI 240</td>
<td>Premium</td>
<td>As for EI classes Average < 140°C Each part < 180°C with additional loads</td>
</tr>
<tr>
<td>E (integrity)</td>
<td>E 15 up to E 240</td>
<td>None</td>
<td>Time till cracks/openings or sustained flaming - ignition of cotton pad</td>
</tr>
</tbody>
</table>

7.3.2 Examples of fire tests performed on bio-aggregate based products

Few tests on bio-aggregate based materials are performed. Unfortunately access to the test data remains confidential and the understanding of the products behaviour is penalized. The reported tests results are realized on wall made with straw ball and hemp concrete.

7.3.2.1 Straw wall with renders: Ecological Building Network (USA) [Intertek, 2007a]

This test was performed by Intertek Testing Service (TX USA, 2006) in accordance with the Fire Tests of Building Construction and Materials ASTM E 119-05a. The fire curve is quite similar to ISO R834 fire used in EU. The 10 ft x 10 ft wall assembly was constructed with rectangular wheat straw bales completely filling the test frame. The gaps at the intersections of the stacked bales were stuffed with a mud and straw mixture that was prepared using locally available dirt plus a small amount of chopped straw mixed with enough water. Each side of the wall was covered with galvanized self-furred stucco reinforcing mesh (KEYMESH). The cement / stucco was applied in two layers, each nominally $\frac{1}{2}$” thick. The mix consisted of 1 part lime, 3 parts Portland cement, 10 parts sand,
and water to a workable consistency. The stucco was applied 36 days prior the fire test. The average moisture content of the straw before the fire test was 18.4%.

The test wall, contained in a non-loadbearing frame assembly, was placed in front of the vertical wall furnace for a period of 2 hours. After 15 minutes fire exposure, steam/smoke issuing from small cracks on the unexposed side. At 20 minutes, popping noises coming from the exposed side. Small cracks have formed in the exposed stucco at 30 minutes, with light flaming. At 1 hour, cracks and flames increase on the exposed side. The test is stopped at 2 hours and the sample is removed for hose stream test. The exposed render layer falls down and the straw burns (Figure 7.3). External render is still on place and no large cracks was observed (no passage of flame, of gases hot enough to ignite cotton waste, or of the passage of water from the hose stream). Transmission of heat through the wall during the fire exposure did not raise the average temperature on the unexposed surface more than 121°C, nor any individual temperature more than 162°C. Figure 7.3 and Figure 7.3 show the state of the sample during fire test and the temperatures of thermocouples placed on cold face, respectively. The fire resistance referring to [EN 13501-2, 2007] of the tested solution is probably equivalent to EI 120.

The same test realized without reinforcement of the render was performed by the same authors. The results was equivalent to EI 60 due to large cracks on unexposed render [Intertek, 2007b].
Figure 7.3 Image of the 2 hours fire resistance test performed on straw wall [Intertek, 2007a]

![Image of the 2 hours fire resistance test performed on straw wall][1]

Figure 7.4 Temperature of thermocouples placed on cold face of straw wall during two hours fire resistance test [Intertek, 2007a].

![Temperature of thermocouples placed on cold face of straw wall during two hours fire resistance test][2]

7.3.2.2 Straw wall with timber frame structure: “Maison de Montholi-er”(France) [CEBTP, 2004]

This test was performed by CEBTP (France, 2004). Two tests are performed using real fire (without furnace): combustion of heptane.

A test is performed on 1.80 x 2.00 x 0.39 m roof element realized with a timber frame structure filled with straw bale. A plywood panel (27 mm) was applied on the internal surface. The roof element was placed at 45° and exposed to the fire (Figure 7.5). Thermocouple were placed in the sample. The fire test duration was about 20 minutes. The temperature at the interface straw plywood reached 230°C at the end of the test. After such fire exposure, the straw was not altered.

A second test was performed on 1.85 x 1.90 x 0.44 m³ wall element realized with a timber frame structure filled with straw bale. An internal lime coating was applied on the internal side (20 mm) and a hemp lime mortar (20 mm with two layers) was applied on the external side. The heptane tank was placed at the bottom of the wall (Figure 7.5). The fire test duration was 85 minutes without loose of element stability. The exposed render lost a first layer after 45 minutes but the second layer remained on place. The temperatures of thermocouples placed into the straw at 10 cm of the cold face are dispersed (Figure 7.6). The straw combustion was locally started after 30 minutes and smouldering fires were suspected.
Figure 7.5 Fire tests performed on roof and wall elements. “Maison de Montholi-er” (France) [CEBTP, 2004].

Figure 7.6 Temperatures of thermocouples placed at 10 cm of the cold face. “Maison de Montholier” (France) [CEBTP, 2004].
7.3.2.3 Straw ball wall: performed by Pavus (Czech) [Pavus, 2011]

Fire Resistance test of load bearing straw bale wall has been carried out by [Pavus, 2001]. The wall was made by 7 layers of straw bales of the size 50 x 42 x 50 cm. The bales were compressed with the timber during the construction and at the end with the load which simulates the construction load. Basic volume weight of the bales was 77 kg/m³ and after the compression it was 93 kg/m³. The surface was covered with steel mesh and plastered with clay plaster from interior and lime plaster from exterior. The fire resistance of this structure is EI 120. After 146 minutes the wall collapsed due to limits in load bearing capacity.

7.3.2.4 Facade element made with wood and Straw (France) [CSTB, 2009]

This test was performed by CSTB (2009) in France for the “wood and construction association”. The test is realized on a facade element made with a timber frame structure filled with straw ball. A plywood panel was applied on the internal and external surface. The facade element corresponds to the junction of wall and floor between two levels of the building. The detail of window frame was reproduced. The fire started in the down floor and the fire propagation to the second floor was analysed.

A real fire was obtained with 600 kg of wood placed on the down floor. The obtained temperature follows the fire test curve ISO R834 during the 30 minutes of the test. Upper floor windows glass brake at 3 min and plywood was carbonated on upper floor wall at 10 min. At 20 min the upper floor wall was burnt (Figure 7.7).

After fire extinguishment at 30 min, the state of the wood slab and wall were analysed. In the down floor wall, the straw was carbonated on 10 cm. The tightness at the junction of floor and facade was not affected.

The tested building solution was then validated for a fire resistance of 30 min and was approved for buildings with three levels.
7.3.2.5 Wall made with hemp concrete blocks: BCB (France) [CSTB, 2005]

This test was performed by CSTB (2005) on a wall made with block of hemp concrete. The blocks “chanvribloc” (30 cm of thickness) were coated with a render (20.2 mm thickness) on the exposed side (Figure 7.8). The density of hemp concrete blocks is 486 kg/m3. The blocks were glued with a lime mortar applied in layer of 5 mm thickness. The wall was placed above a gas furnace. The furnace temperature follows the fire test curve ISO R834 during 111 minutes.

After 14 minutes of fire exposure, the render fallen down. Some smoke emissions were noted on all the wall surface until the end of the test. The colour of joins between blocks changed with eat. After 90 minutes, hollows formed in the joins. At 102 minutes, a join was perforated (direct vision of the fire) and the blocks turned black colour. At 105 minutes the fire proofing is broken. An increase of temperature higher than 180°C was quoted and the test is stopped at 111 minutes. After cooling, the entire of the wall fallen down.
Figure 7.8 Wall realized with hemp concrete blocks. Fire test performed by CSTB (France) [CSTB, 2005]

Figure 7.9 Detail of a join between blocks at 102 minutes. Fire test performed by CSTB (France) [CSTB, 2005]
7.3.3 Fire resistance of bio-aggregate based products

The bio-aggregate based products are currently non loadbearing. As a consequence, fire resistance is only based on EI classes. As previously mentioned, limited studies were reported. Some additional references can be quoted:

- Hemp concrete wall (> 30cm thickness) 90 min [CenC]
- Straw wall+earth render (1 single face) 90 min [IBMB, 2014]
- Straw panel (stramit) EI30 [Stramit]

Due to the high cost and the complexity of the test, fire resistance test are not sufficiently performed on bio-aggregate based products to propose a model. The behaviour of such material ranges between the behaviour of mineral binder based product (cellular concrete, gypsum) and the behaviour of combustible materials as timber frame.

In the case of straw wall, the persistence of the render during fire exposure appears as a key parameter. Such a conclusion is not appropriate in the case of hemp concrete wall.

7.4 Real scale fire tests

Some other real scale fire tests are performed to evaluate the efficiency of building solutions. Such tests are realized with real fire. The tested room or building can be partially instrumented. The test duration and temperature level are not systematically controlled. Interest of such tests is to test the building solution under increase and decrease of temperature, including effect of fireman intervention. The test can be interesting to really understand the building behaviour under fire: loose of stability, smoke production, temperature level... Such test are inappropriate to predict the expected Euroclass or to predict the fire resistance of the tested product. An example of Straw house exposed to bushfire is mentioned in [Csiro, 2012]. In such fire exposure various heat rates are tested reproducing external fire.

7.5 Other quaint matter fire test

Many fire test are presented to prove the fire performances of some new bio-aggregate based products. These tests usually consist in the exposition of a sample of product directly to the flame of a burner [floweringelbow, 2012] [Allin, 2013].
The low temperature level and the delay of temperature increase of the unexposed sample face is shown as a demonstration of the good performances of tested material against fire. But, in such tests, the heat flux in the sample is not controlled and nothing regarding smoke release or droplet formation was analyzed.

Such test are also inappropriate to predict the expected Euroclass or to predict the fire resistance of the tested product.

References

[Stramit] Stramit International website: http://stramitinternational.com/
Chapter 8. Durability of bio-based concretes

Sandrine MARCEAU and Guillaume DELANNOY

Université Paris-Est, IFSTTAR, MAST/CPDM, FR-77447 MARNE-LA-VALLÉE
CEDEX 2, sandrine.marceau@ifsttar.fr

Abstract. Used for several decades for building insulation, concretes containing plant aggregates have thermal, acoustic and hygrothermal properties that greatly improve the comfort of homes [Amziane and Arnaud, 2013]. Nevertheless, during their life time, they are submitted to a hydrothermal environment (humidity and temperature variations) that can change these functional properties and/or induce the development of microorganisms on their surface. The objective of this chapter is to present the state of the art on the evolution of the properties of these vegetal concretes after different types of aging in laboratory.

8.0 Introduction

The assessment of the durability of buildings is an activity for sustainable development, which results in requirements of the long term-performance of the structures in the whole life of structure. This is defined by the overall behaviour of the functions required by the product. This performance is studied for the product lifetime, from its commissioning to its failure.

Different terms can be used to characterize the lifetime of the construction materials [Talon, 2006]:
- The durability is the ability to perform a function until a limit state is reached.
- Aging refers to the functional changes decreasing the ability of a product to perform a function.
- The evolution of the properties refers to positive or negative changes of the characteristics of the material according to its expected performance.
- The effective life of a material is the time between commissioning and the moment when its performance level becomes lower than a failure threshold (Figure 8.1).
The evolution of the properties of construction materials in a building is related to several parameters: the initial properties of the material, its environment and its conditions of use. Based on the previously described properties of vegetal concretes, several factors can influence their performances, concerning environmental and use conditions, relative humidity, temperature, or exposure to liquid water can play a role. The alkaline character of the binder and the presence of ions may also be responsible of properties modifications. Finally, because of the nature of the plant aggregates, microorganisms' growth is possible. It also depends on the environment in which the material is used.

These factors play a role in modifying microstructural properties of materials. Their thermal, acoustic and mechanical performance, highly dependent on their microstructure, can also be modified over time.

A common method to study the durability of building materials is to achieve accelerated aging tests in laboratories, according to the specific properties of materials and their environment of use. The comparison of the characteristics of materials after these accelerated aging and in natural conditions is then used to model the evolution of their performance and determine their lifetime. In the case of vegetal concretes, few studies exist and they are based on previous works performed on concrete durability. These studies aim to analyse the impact of humidity, of immersion in water, immersion and drying, wetting and drying or freeze/thaw cycles, accelerated carbonation on material properties. Protocols have also been developed to observe the potential development of microorganisms on the surface of the bio-based building materials.

In this chapter, the different accelerated aging protocols used in laboratory to assess the durability of bio-based construction materials is firstly described. The behaviour of plant-based concrete submitted to these tests is then presented. To better understand these performances, the state-of-the art is expanded to several investigations of aging of vegetal fibres and composites containing vegetal fibres embedded in a mineral matrix.
8.1 Accelerated aging protocols for bio-based construction materials

Various types of aging protocols were used to accelerate the evolution of the properties of plant-based concretes in laboratory: environmental aging, based on temperature and/or humidity variations in static or dynamic mode and biological aging. These experiments were performed essentially on hemp concretes. The main parameters of these studies are reported on Table 8.1.

8.1.1 Environmental aging

The protocols used to study the durability of bio-based concretes subjected to environmental constraints are varied: cyclic variations of humidity at constant temperature [Hellebois et al., 2013, Marceau et al., 2015], simultaneous variations of temperature and humidity [Arrizi et al., 2015, Arrizi et al., 2016], freeze / thaw cycles [Walker et al., 2014], immersion and drying cycles [Hellebois et al., 2013, Sonebi et al., 2015; Castel et al., 2016] or storage in static conditions of temperature and humidity, accelerated carbonation [Chabannes et al., 2015]. Moreover, the properties of the plant-based concretes measured before and after these aging protocols are also very different. Therefore, the comparison of the results of the different studies is very difficult.

On the other hand, when the conditions of aging are cyclic, the duration of the test is often short, up to three months. This aging time is probably too short to highlight significant variations in the properties of the materials by keeping aging mechanisms similar to those that occur naturally in a building.

8.1.2 Biological aging

Plants, either in the form of aggregates or fibres, naturally contain microorganisms. Their proliferation can affect the indoor air quality in buildings where bio-based construction materials are used. Moreover, it may also modify the intrinsic properties of the materials. It is therefore useful to identify the necessary conditions for their growth and their impact on the performances of plant concretes.
Table 8.1 Different types of aging tests used for vegetal concretes

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Arizzi et al. 2016]</td>
<td>Hemp concrete</td>
<td>Dynamic: 3 Climatic simulations: variation of temperature, humidity, rainfall, influence of salts</td>
<td>12 days</td>
</tr>
<tr>
<td>[Walker et al., 2014]</td>
<td>Hemp-lime concretes</td>
<td>Freeze/thaw cycles, Exposition to salts (NaCl) during 12 hours and drying during 12 hours</td>
<td>10 cycles between -15 and 20°C, 20°C during two weeks and 40°C during the next two weeks</td>
</tr>
<tr>
<td>[Hellebois, 2013], [Hellebois et al. 2013]</td>
<td>Hemp concrete</td>
<td>Wetting and drying cycles, Immersion and drying cycles</td>
<td>30°C, 40 and 90% RH, 20°C, 2 cycles, 41 days, Drying at 40°C</td>
</tr>
<tr>
<td>[Abdellaoui, 2014], [Marceau et al., 2015]</td>
<td>Hemp concrete</td>
<td>Wetting and drying cycles, Biological aging</td>
<td>30°C, 40 and 98% RH, 3 months at 30°C and 98% RH</td>
</tr>
<tr>
<td>[Sonebi et al., 2015], [Castel et al., 2016]</td>
<td>Hemp concrete</td>
<td>Full Immersion in water and drying cycles</td>
<td>Immersion at 20°C, drying at 50°C during 48 hours</td>
</tr>
<tr>
<td>[Magniont et al., 2012]</td>
<td>Hemp concrete</td>
<td>Storage at 25°C and RH >95%</td>
<td>Until 2.5 years</td>
</tr>
<tr>
<td>[Bessette et al., 2015]</td>
<td>Precast hemp concrete</td>
<td>Storage in inside climate, Storage in external climate</td>
<td>90 days, One year</td>
</tr>
<tr>
<td>[Le Bayon et al., 2015]</td>
<td>Different bio-based construction materials</td>
<td>Development of a mould test method</td>
<td></td>
</tr>
</tbody>
</table>
8.1.2.1 Description of the microorganisms

Different kinds of microorganisms are able to grow on the surface of materials: moulds and bacteria [CSHPF, 2006, Dehoux and Dehoux, 1997]. Bacteria may form colonies with agglutinated cells remaining in an aqueous gel (biofilm).

Moulds have to draw into their environment the water and organic and inorganic substances necessary for their development. Their vegetative system consists of filaments or hyphae which constitute a network called mycelium. Fungi are propagated by spores formed from the mycelium. Spores are kinds of microscopic seeds which are dispersed by air currents, runoff water or by sticking on objects. Under favourable conditions of temperature and moisture, spores can germinate and create mycelium again that can, in turn, resporulate and recontaminate.

Fungi need humidity to develop and the presence of different genera depends on the water activity A_w in the materials: for low water activity ($A_w < 0.8$), Penicillium and Aspergillus will colonize the substrate. Clostrium will appear when the humidity increases ($0.8 < A_w < 0.9$) and for wet surfaces ($A_w > 0.9$), Strachybotrys can be observed [Gueguen et al, 2015, Pasanen et al, 1992]. The nature of the support may also influence the installation of adapted species.

Their presence is not always dangerous for inhabitants. However, they may present risks to human health: allergies, infections...

8.1.2.2 Mechanisms of biodegradation

Colonization of materials by moulds generally induces their biodegradation and results from two mechanisms:

- A physical action, linked to the development of hyphae in the material, which can lead to its breakage,
- A chemical action, due to the production of various metabolites, which act by assimilation or dissimilation.

During the assimilation process, the constituents of the material are used as nutrients after their reduction by different extracellular enzymes that facilitate penetration of the hyphae in the material. The dissimilation processes are related to the production of organic acids and pigments. Organic acids (such as gluconic, citric, oxalic acids...) are produced in varying amounts during the metabolic activity and can react with the substrate. In addition to the direct action of these acids, their production promotes the growth of acidophilic fungal species that can continue the degradation of the support.
8.1.2.3 Methods for determination of fungal resistance of construction products

Several standards of various origins exist to determine the performance of construction products against a fungal contamination. The assessment procedures proposed include three recurring phases:

- Product contamination, by spraying a liquid suspension, or by deposition of microorganisms from a liquid inoculum.
- Incubation of the contaminated material in static conditions: samples are generally incubated between 25 and 32°C, with relative humidity close to saturation for periods during several weeks.
- Evaluation of microbial growth: the evaluation techniques consist in determining, quantitatively, by measuring the fungal biomass, or semi-quantitatively, the level of development of fungi. Less common techniques rely on mass variation or modification of various physical properties.

8.1.2.4 Proposal of a fungal resistance test development tailored to bio-based insulation materials

A laboratory test method has been developed in order to assess the resistance of bio-based insulation materials against moulds [Le Bayon et al., 2015]. According to this study, the parameters having the highest impact on fungal growth are humidity, the composition of bio-based material and the additives it contains.

The parameters of the mould test take into account the climatic conditions of insulation materials used in buildings. The test is performed at 85% RH and 26°C. The samples are inoculated with a fungal solution containing three fungal strains (*Aspergillus Niger*, *Penicillum Brevicompactum*, *Cladosporium Sphaerospermum*). The mould growth is visually assessed and quantified by measuring the number of cultivable fungal units.

8.2 Aging of bio-based concretes

The evaluation of the lifetime of construction materials requires to characterize the evolution of their properties by subjecting them to accelerated aging protocols in laboratory. The results obtained are then compared to those measured after aging under natural exposure conditions in a building.

In this section, the results published about the impact of natural aging are firstly presented. Then, the results concerning different types of laboratory aging tests are then detailed.
8.2.1 Natural aging of bio-based concretes

There are limited results published regarding the evolution of the properties of bio-based concretes under natural conditions. Three investigations on hemp concretes were reported.

In the first study, [Magniont, 2010] the compression strength of hemp concretes stored until one year in different environments: controlled atmosphere (20°C and relative humidity above 95%) and outdoor conditions without protection were measured (Figure 8.2 a).

![Figure 8.2 Evolution of the compression strength (a) for hemp concretes stored in controlled atmosphere and outdoor conditions [Magniont, 2010] and (b) for hemp concretes (LHC) and rice husk concretes (LRC) stored outdoor (OC: outdoor conditions) and in indoor standard conditions (ISC) [Chabannes et al. 2015]](image)

Figure 8.2 indicates that the compression strength increases up to 12 months for samples stored in controlled conditions. For samples stored in outdoor conditions, it increases until 9 months, and after it drops at 12 months. This reduction of compressive strength could be attributed to the experimental dispersion of the results or to the high water content of the specimens at the time of the test. This result can also result from long-term degradation mechanisms under conditions of outdoor exposure, like leaching phenomena of the mineral binder.

The same type of study has been performed on hemp concretes (LRC) and rice husk concretes (LHC) [Chabannes et al., 2015]: samples were stored outdoor (OC: outdoor conditions) and in indoor standard conditions (ISC) 24 hours after mixing. The evolution of the compressive strength of the concretes is reported on Figure 8.2 b. It can be observed that the compressive strength of both concretes increased as a function of the time, but this increase is limited after four months for rice husk concretes. These evolutions of compressive strength are in agreement with the previous study [Magniont, 2010].
Another result is the difference between the two curing conditions: The strength enhancement was higher for specimens exposed outdoors whether the type of concrete. This was explained by favourable conditions to the carbonation process in the outdoor conditions. Indeed, in this environment, the relative humidity varied from 45 to 75% and these conditions were beneficial for CO₂ diffusion and dissolution.

The third investigation [Bessette et al. 2015] focussed on the development of mould on hemp concrete walls coated with two different renders and exposed to external conditions during one year. The first render used was permeable to vapour water but not to liquid water, whereas the second was permeable to both liquid and vapour water. After one year, the results showed that the presence of a render impermeable to liquid water limited the presence of microorganisms whereas a permeable render couldn’t prevent their proliferation. Thus, the choice of the render was essential to protect hemp concrete walls from microorganisms’ development.

8.2.2 Influence of environmental aging on the mechanical properties

Several studies have focussed in laboratory on the influence of different environments on the properties of bio-based concretes.

8.2.2.1 Static conditions

In order to study the long-term performances of hemp concretes, Magniont [Magniont et al., 2012] stored hemp concretes in a humid room with relative humidity higher than 95% during one year. The evolution of the compressive strength of hemp concrete and of the pure binder paste is presented on Figure 8.3.

![Figure 8.3 Evolution of compressive strength of the pure binder paste and hemp concrete with time [Magniont et al., 2012]](Unedited version)
It can be observed that the evolutions of the compressive strength of the pure binder paste and of the concrete are decoupled. The maximum compressive strength is constant after about 50 days for the binder paste, whereas it increases continuously until one year for the hemp concrete. This decoupling may be explained by a setting delay due to the presence of vegetal aggregates [Sedan, 2007]. However, other studies mentioned delays of about several minutes to several hours and therefore, this statement cannot be used to support the shift of several months observed here.

Another phenomenon could explain the increase of the strength of the hemp concrete: the mineralization of plant aggregate. This was demonstrated by SEM on hemp shiv extracted from a 2.5 years concrete (Figure 8.4). Mineral products are visible in the walls of the pores of the hemp shiv. During the storage in a wet chamber, calcic phases of the binder dissolved and calcium species could diffuse into the pores of hemp shiv, where they could re-precipitate as calcite. This mineralization of the vegetal aggregate could explain the enhancement of the compressive strength of concretes and the stiffening of hemp aggregates.

![Figure 8.4 SEM observations and CA EDS mapping of cross sections of hemp shiv extracted from a 2.5 years concrete [Magniont et al., 2012]](image)

8.2.2.2 Dynamic conditions

More complex aging protocols have also been set up to simulate actual use conditions of bio-based concretes used in buildings.

Wetting and drying cycles

In several studies [Abdellaoui, 2014, Marceau et al. 2015], the aging of hemp concretes has been simulated in laboratory with humidity cycles. The temperature was fixed at 30°C for both investigations. It corresponds to the temperature range where fungal growth is possible. The humidity was varied from 40% to 90 and 98%. The duration of the cycles in these investigations varied from one to two weeks.
The variation of density and of compressive strength was small after the wetting and drying cycles (Figure 8.5). In this study [Hellebois et al., 2013], three different binders and two type of shiv have been used. It can be observed that the density and the compressive strength of the concretes depended on both the type of binder and shiv. The variation of these properties after wetting and drying cycles (duration: 45 days) was also different depending on the composition of the material. The variation of compressive strength was linked to the variation of density of the concretes after the cycles. Without any further experiment, no explanation of these results can be obtained.

Figure 8.5 Variation of the density and of the compressive strength of hemp concretes [Hellebois et al., 2013]

In the second study [Abdellaoui, 2014, Marceau et al. 2015], a slight increase of the density of the two hemp concretes was observed after 75 days of cycles, corresponding to a weak reduction of the porosity of the material. However, none of these studies have shown significant variations of the insulation properties of the hemp concretes (Table 8.2), no evolution of the thermal conductivity and of the acoustic behaviour has been observed.

Table 8.2 Variation of the thermal conductivity of two hemp concretes before and after 75 days of wetting and drying cycles [Abdellaoui, 2014, Marceau et al., 2015]

<table>
<thead>
<tr>
<th>Thermal conductivity (W/(m.K))</th>
<th>PNC – shiv A</th>
<th>PNC – shiv B</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 days</td>
<td>0.102 ± 0.006</td>
<td>0.105 ± 0.005</td>
</tr>
<tr>
<td>After aging</td>
<td>0.103 ± 0.003</td>
<td>0.112 ± 0.008</td>
</tr>
</tbody>
</table>

Full immersion in water and drying cycles

Full immersion in water and drying cycles of hemp concrete were reported in 3 investigations [Hellebois, 2013, Sonebi et al., 2015, Castel et al., 2016]:
Long cycles (2 cycles of 22 days) have been applied on hemp concretes until a saturation state is obtained for water absorption and desorption [Hellebois, 2013]. These tests show that hemp concretes can absorb their weight of liquid water and that this absorption is rapid (80% of weight increase in 100 hours). As in the case of wetting and drying cycles, the density variations after two immersions depend on the type of binder and aggregate. The compressive strength of the concretes was then linked to their density variations. In the case of prompt natural cement, a hydraulic binder, the increase of density and compression strength may suggest that hydration of the binder continued during the immersions. This result is not observed when the binder contains lime. Leaching of the binder was also observed, especially for the first immersion, wherein the pH of the solution increases up to 12 in a few hours.

Sonebi et al. [Sonebi et al., 2015] submitted hemp concrete specimens to 10 cycles of full immersion in water and drying in oven. The samples are successively immersed in a water bath at 20°C during 48 hours and then placed in a ventilated oven to dry at 40°C for 48 hours. Figure 8.6 presents the variation of mass after 10 cycles. The masses of hemp concrete are reduced after the cycles. Depending on the mix, the reduction of compressive strength varies from 53% to 81% (Figure 8.6). The weathering affected significantly the compressive strength after only 10 cycles. This reduction after immersion and drying cycles can be attributed to the softening of the hemp concrete and the weakening of the interface zone between hemp shiv and binder, which can also led to an increase in the porosity. It was also observed after cycles that the water colour changed. This may result from leaching of materials.

![Figure 8.6 Variation of weight and of compressive strength after 10 cycles of full immersion and drying [Sonebi et al., 2015]](Unedited version)

Short cycles (13 cycles) was also carried out in another study [Castel et al., 2016] on hemp shiv concretes. During these cycles, the weight and the length (Figure 8.7) of the samples have been measured after each absorption and desorption. Different behaviours were observed for A and A' concretes, corresponding to
render formulations, the length of the specimen increases as a function of cycles, whereas for concrete C (floor formulation), the length of the sample was constant. In these last samples, the porosity was high enough to compensate the swelling of the vegetal aggregates during the water immersion. After these cycles, the compressive strength decreased for all the concretes, whatever their composition.

Figure 8.7 Length variation of the samples during immersion and drying cycles [Castel et al, 2016]

Climatic simulations

Real climatic conditions have been simulated to study the long-term durability of hemp concretes [Arizzi et al., 2015; Arizzi et al., 2016]. Three types of climate were selected: Mediterranean, tropical and semi-arid climates (Figure 8.8).

The mean values of temperature, relative humidity and rainfall for one month are applied during one day in the accelerated aging test. Thus, the total duration of the aging in laboratory is 12 days, corresponding to one year. The effect of airborne salt in coastal areas has also been taken into account, by soaking a part of the samples in a NaCl solution before the aging test.

During the cycles, the weight of the samples remained constant, except for rainfall events that cause a massive increase proportional to the spraying duration and to the amount of sprayed water.

At the end of each weathering simulation, the microbial colonisation of the samples is observed and identified. To do this, adhesive tape samples were collected to analyse the microbial community present on the materials. After inoculation on Petri plates and incubation at 28°C during one week, the different colonies were separated and identified. In both control and test samples, different common bacteria have been detected. Some fungi were also isolated.

Due to the higher temperature and relative humidity in the tropical climate, microbial colonisation was more intense in these conditions. The colonisation was less important for the arid climate. However, no predominance of one type of mi-
croorganism over another has been observed in this study and most of the detected microorganisms were often present under a large range of environmental conditions.

Figure 8.8 Average conditions of temperature, relative humidity and rainfall recorded in a whole year in the Mediterranean zone and corresponding test conditions of temperature and relative humidity [Arizzi et al., 2016]

The presence of a biofilm of bacteria in the surface of specimen was also visible by ESEM. It could have an impact on the properties of the materials by closing the porosity and decreasing the water permeability of the concretes.

The characterisation of the sample mineralogy after the different weathering tests has shown the presence of vaterite at the surface of the samples. This component can be produced by bacilli, that may precipitate carbonates, and by fungi, which have the capacity to transform and precipitate minerals. The presence of vaterite was higher after the Mediterranean and the tropical simulations, where the biological activity was the more important.

Accelerated carbonation test

The carbonation reaction is a natural reaction taking place between the CO$_2$ of the surrounding air and hydrated lime or portlandite Ca(OH)$_2$ [Cizer et al., 2012]. It proceeds from the surface to the core of the concretes by diffusion of gaseous CO$_2$ in the open pores. The overall carbonation reaction is:

$$\text{Ca(OH)}_2 (s) + \text{CO}_2 (g) \rightarrow \text{CaCO}_3 (s) + \text{H}_2\text{O} (aq) + 74 \text{kJ/mol}$$

The reaction is very slow, due to the low concentration of CO$_2$ in the atmosphere. It depends on the nature of the binder phase, to the pore network and to the relative humidity. The formation of CaCO$_3$ induces an increase of the bulk density of the material and a decrease of its porosity and its alkalinity. Thus, these variation of microstructure can have an influence on the functional properties of the materials, such as mechanical, thermal or acoustical behaviour.
During 10 months of aging in outdoor conditions, Chabannes [Chabannes et al., 2015] showed that this environment enhanced the compressive strength of bio-based concretes by increasing the carbonation of the binder (Figure 8.2 b).

In the same study, the influence of accelerated carbonation curing (ACC) during one month is also investigated: after 40 days of drying at 20°C and 50% RH, the concrete specimens were exposed to CO₂ curing. The conditions in the enclosure are fixed to 20°C and 65% RH. CO₂ was injected with an initial concentration of 50% v/v and regular injections are performed when the CO₂ is entirely consumed by the carbonation reaction. The compressive strength of the concretes was measured after the initial curing and after one month of accelerated carbonation curing (Figure 8.9 a).

These results showed that the compressive strength after ACC is almost equivalent to that observed after 10 months of outdoor exposure. It was doubled if it is compared to that measured after two months of natural exposure.

The carbonation profiles of these samples (Figure 8.9 b) show that:

- For samples stored in indoor standard conditions (ISC), the binder was uncarbonated,
- A carbonation front was visible for samples stored 10 months in outdoor conditions (OC), varying from 0.8 to 1.5 cm depending on the plant aggregate,
- After one month of ACC, the carbonation front was almost the same as that observed after 10 months of outdoor exposure. Moreover, the core of the hemp concretes appeared more carbonated and was coloured in pale pink.
Figure 8.9(a) Compressive strength of hemp concretes (LHC) and rice husk concretes (LRC) after accelerated carbonation curing (ACC) compared to natural conditions (ISC: indoor standard conditions, OC: outdoor conditions), (b) comparison of the cross-sectional views of the samples after spraying with phenolphthalein [Chabannes et al., 2015]

These results are confirmed by the measurements of the CaCO$_3$ contents in the core of the samples. Moreover, this work showed that the slow C$_2$S hydration is linked to the carbonation of the hydrated lime of the binder. Indeed, the water released by the carbonation reaction enables the C$_2$S hydration.

Other aging tests

Other aging tests, based on those performed on civil engineering concretes, have also been applied to hemp concretes, such as freeze/thaw cycles and salt exposure [Walker et al., 2014].

Freeze/thaw cycles didn’t create any cracks in the materials, and no visible variations of the microstructure can be observed by SEM. Similarly, sodium chloride exposure during one month does not modify the compressive strength of the samples. This can be explained by the high ductility of the plant aggregates that can accommodate expansive salt crystallisation pressures.

8.2.3 Microbial aging

The development of microorganisms created a real obstacle to wide spreading of bio-based materials in buildings. Due to the hydrophilicity of the materials and the presence of vegetal aggregates, the microorganisms find conditions very favourable to their proliferation.

In the last section, results regarding the microorganisms’ growth after weathering tests were presented. It has reported that their presence has, among other things, an impact on the mineralogical composition of the concretes with the formation of vaterite [Arizzi et al., 2016]

Before the definition of a fungal resistance test developed for bio-based construction materials (section I.2.3), several studies have been performed in order to analyse specifically this type of aging on hemp concretes. Most of these studies consist in storing hemp shiv or hemp concretes in conditions favourable to the growth of bacteria and fungi (temperature between 22 and 35°C, high relative humidity). This can be done with microorganisms naturally present in the material or after inoculation with a stain solution [Marceau et al., 2015].
After 7 months of storage in a humidity chamber at 30°C and 80% RH, for hemp concretes inoculated with a culture of microorganisms, no microbial development has been observed [Walker et al., 2014].

The natural microbial growth has also been studied on different hemp concretes after 3 months of storage at 30°C and a relative humidity higher than 95% [Hellebois et al., 2013]. Fungal growth is visible on the concretes, whatever their composition (Figure 8.10).

Figure 8.10 Presence of fungi after conservation of hemp concrete at 30°C and 98% RH [Hellebois et al., 2013]

These fungi were collected, cultivated and used to inoculate new samples of hemp concretes [Abdellaoui, 2014; Marceau et al., 2015]. At the time of their inoculation, the concretes were aged of 14 and 120 days. They were then incubated in environmental conditions favourable to microorganisms' development (30°C, 98% RH) and the presence of moulds was observed 100 days after (Table 8.3). The surface pH of the concretes has also been measured at the same time.

In Table 8.3, it can be observed that the presence of moulds is only visible for samples inoculated 120 days after their manufacturing and the surface pH of the material is about 9. For samples inoculated 14 days after their manufacturing, no fungal growth is observed and the pH surface is around 10.5. The pH value is reduced, due to the natural carbonation reaction of the binder. This lower value of pH allowed the microorganisms to grow at the surface of the hemp concretes. The pH value seems to be one of the factors to take into account to assess the risk of mould growth in plan concretes.
Table 8.3 Influence of the material pH on fungal growth [Abdellaoui 2014]

<table>
<thead>
<tr>
<th>Age of the concrete</th>
<th>14 days</th>
<th>120 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of shiv</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Surface pH</td>
<td>10.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Presence of moulds?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

8.2.4 Conclusion

Because of their recent development, few studies have focused on the assessment of the durability of hemp concretes. The protocols used in laboratory and the measured properties were very different. Therefore, it is still difficult to identify precisely the main degradation mechanisms of these materials. However, many others studies have focused on the durability of composites containing a mineral matrix reinforced with vegetal fibres, used for their mechanical properties. The main results of these investigations, in connection with the bio-based concretes, are presented in the next section.

8.3 Aging of natural fibres-cement composites

Composites containing natural fibres reinforcements in a mineral matrix are promising structural materials for construction. Several studies gave results about the evolution of their mechanical properties when they are exposed to different kinds of environments, especially humidity.

The aging protocols are generally immersion and drying cycles and the mechanical properties of the composites are measured as a function of time [Melo Filho et al., 2013, Mohr et al., 2005, Mohr et al., 2006, Ramakrishna and Sundararajan, 2005, Sivaraja et al., 2010, MacVicar et al., 1999, Juarez et al., 2007, Ferreira et al., 2015, Toledo Filho et al., 2009]. A reduction of mechanical strength of the composites, accompanied by a decrease of their ductility was observed in the early aging cycles (Figure 8.11). Physicochemical and microstructural analyses were performed to understand these results. Two explanations are proposed to understand these results: the mineralisation of the fibres and their degradation in the alkaline binder.
8.3.1 Mineralisation of the vegetal fibres

Hydrated mineral binders contain portlandite Ca(OH)_2. This compound is soluble in the interstitial solution located in the pores of the material. By diffusion, calcium and hydroxide ions migrate into the pores of the elementary fibres of the plant. When the water content decreases, portlandite can re-precipitate on the fibres and within the lumen (Figure 8.12). This resulted in a reduction of the porosity of the plant and of the tensile strength of fibres.

These phenomena of mineralization of natural fibres are consistent with observations of Magniont [Magniont et al., 2012] on hemp shiv in a mineral matrix presented in section II.2.1. of this chapter.
8.3.2 Degradation mechanisms of vegetal fibres

The degradation of natural fibres in an alkaline medium is described by Wei [Wei and Meyer, 2014, Wei and Meyer, 2015] in four steps (Figure 8.13). Lignin plays the role of glue in the cell wall and protects the fibre against microbial and chemical degradation of polysaccharides, whereas hemicelluloses bind the cellulose micro-fibrils. These two components are amorphous and sensitive to the alkaline environment of the cement matrix. Therefore, the first step of the mechanism corresponds to the degradation of lignin and of a part of hemicellulose, leading to the exposure of holocellulose. Then, the degradation of the hemicellulose induces the decreasing of the integrity and of the stability of the vegetal cell walls. The third step is the destruction of the intra-molecular hydrogen bonding, leading to the dispersion of the cellulose micro-fibrils. Then, the amorphous regions of cellulose are hydrolysed, inducing the complete degradation of cellulose micro-fibrils.

During this degradation process, the hydration products of the binder, such as C-S-H and soluble portlandite, can diffuse in the cell wall, leading to a faster mineralization and embrittlement of natural fibres.

After the first step of the alkaline degradation, Pejic [Pejic et al., 2008] observed that the degradation of lignin and hemicellulose hemp fibre led to a reduction of the water vapour permeability.

8.4 Concluding remarks

Because of their relatively recent development, few studies have focused on the durability of plant concrete until now. The aging protocols applied in laboratory and the analysed properties are diverse, making the comparison of obtained results very complex. In addition, the aging times used are rather short, and significant variations of the material properties are perhaps not visible for these aging
durations. The protocols implemented until now are focused on similar factors that could influence the material properties: temperature, relative humidity and potential microbiological growth. These can lead to physicochemical and microstructural modifications of the materials and therefore impact the performances of materials in a building.

The understanding of aging mechanisms of plant concretes and the prediction of their lifetime requires comprehensive studies, including multidisciplinary and multi-scale analysis, which take into account the variability of the formulations and of the final properties of the materials. Data on the evolution of their performances in real conditions are also needed. Finally, the construction systems in which plant concretes are integrated into a building, such as the bearing structure and the interior and exterior plasters, have also to be taken into account.

Available data on composites containing vegetal fibres in a mineral matrix, used for their structural properties, allow to understanding the chemical interactions between plants components and a cement matrix. They can be transposed to the plant aggregates used in the bio-based insulation.

References

[Chabannes et al., 2015] M. Chabannes, E. Garcia-Diaz, L. Clerc, J-C. Bénézet, Studying the hardening and mechanical performances of rice husk and hemp-based building mater-

Sara PAVÍA

Department of Civil Engineering, Museum Building, Trinity College, Dublin 2.
pavias@tcd.ie

Abstract. Production parameters affect hydration/carbonation and density of hemp concrete which consequently determine the strength and the hygric and thermal properties of the concrete. This chapter investigates the effect of production parameters including curing conditions (65% vs >95% RH), time of demoulding and specimen geometry (cylinder vs cube) on the concrete’s strength which relates to density and therefore to thermal and hygric properties. It studies hydration in the concrete’s microstructure and measures the compressive strength development at intervals between 1 day and 1 month.

Moulding time and curing conditions influence drying and therefore may impact binder hydration and consequently strength evolution. Specimen geometry may affect drying and can also determine how strain builds up in the concrete and thus when failure occurs.

The chapter concludes that curing hemp-lime concrete with hydraulic content (50%CL90: 50%CEMII) at high RH (>95%) lowers compressive strength (65.4% drop at 10 weeks). It is unclear why this happens, as the presence of water vapour during curing at high RH should enhance hydration and consequently increase strength. It was also found that delaying specimen demoulding increases compressive strength of the CL90: CEMII concrete (22.9% increase at 10 weeks), probably due to the presence of moisture for longer enhancing hydration.

The specimen geometry does not significantly impact the ultimate compressive strength of hemp-lime concrete however, it affects behaviour in compression. Initially, cylinders and cubes deform on load application up to a similar yield point. However, following this yield point, the cylinders fracture showing a more brittle behaviour while the cubes keep crushing to finally experience an additional stiffness produced by mechanical bridges being formed between opposing cell walls.
9.0 Introduction

A significant amount of research has been undertaken on lime hemp concrete in the last decade however, testing variables are not yet standardised. This chapter provides an overview on the effect that some testing variables have on the compressive strength of the concrete with a view to standardise tests methods and procedures.

Some of the most outstanding features of hemp concrete such as its a high thermal capacity and low thermal conductivity are closely related to production parameters as these determine properties such as density therefore, it is interesting to investigate how production variables affect the properties of the concrete.

An attempt was made at comparing results from previous authors to conclude on the effect of production variables in hemp concrete properties however, it was found that the results were hardly ever comparable due to the amount of different testing variables used by the different authors. Therefore, a testing program was set out to investigate the effect of some production parameters, that impact hemp concrete properties including curing conditions (65% vs >95% RH), time of demoulding, specimen geometry (cylinder vs cube) and re-hydration by re-immersion. Concretes made with two different binders, a 50% CL90s: 50% CEMII binder and a 100% NHL3.5, were produced and the impact of the above variables on compressive strength studied.

An overview of the impact of some production parameters on concrete properties

Variables that impact compressive strength. A significant number of variables can affect the strength of hemp concrete including compaction, drying and hydration/carbonation. Moulding time and curing conditions influence drying and therefore may impact binder hydration/carbonation and consequently strength evolution over time. Specimen geometry can affect drying and also determines how strain builds up in the concrete and thus when failure occurs.

In addition, competition for mixing water between the binder and hemp particles (resulting in the binder not fully hydrating) can undermine strength.

High-humidity curing, long periods before demoulding and small surface area of specimens can result in longer drying of mixing water affecting hydration and compressive strength.

The effect of the binder on compressive strength has yielded varying opinions. Hirst et al. (2010) found that the concrete strength does not increase with the strength of the binder. Nevertheless, higher compressive strengths are usually obtained for cement-rich binders [Murphy et al. 2010; De Bruijn 2009]. Nguyen (2010) found that, at 90 days, lime binders reached higher compressive strengths than commercial binders that are typically more hydraulic. Walker and Pavía a, b
(2014) observed that strength development of hemp concrete was a function of the binder’s hydraulic strength up to 6 months but, at 1 year, all concretes displayed a similar compressive strength (0.32-0.41MPa). The authors however noticed that the most hydraulic binders did not fully hydrate, and later reintroduction of water increased hydration significantly enhanced strength.

The curing environment (temperature and humidity) impact drying and speed of carbonation/hydration which lead to hardening, consequently affecting strength development and ultimate strength.

Following manufacture, lime-hemp concrete is placed in a constant environment of temperature and relative humidity (RH) until the time of testing.

Increasing temperature usually enhances carbonation and hydration rates (speeding strength development) while low temperatures can impede hardening and the development of strength. High temperatures may speed up drying however, hemp concrete is typically cured at ambient temperature (approximately 20°C).

Hemp concrete is typically cured at relative humidity ranging from 50 to 65% although a wide variation has been reported including 20±1°C and 60±5%RH (Hirst et al. 2010); 20°C and 60%RH (Evrard 2006); 22-26°C and 30-60%RH (Colinart et al. 2012) and 20°C and 75%RH (Nguyen et al. 2009); 20°C and humidity saturation (Nozahic et al. 2012). Arnaud and Gourlay (2012) determined 20°C and 50% RH as the optimum curing conditions for the evolution of strength of four hydraulic binders at 28 days. Higher and lower RHs (30%, 75% and 90%) were found to reduce mechanical strength.

Retention of samples in their moulds during curing affects the early moisture content and the drying rate of the concrete, variables which determine hydration/carbonation of the binder which impact early strength development. Early strength is important as it relates to building speed and the ability of the concrete to initially stand its own weight when it is heaviest (at highest moisture content).

The effect of the time of demoulding has not been yet investigated. Demoulding has widely ranged, with some authors demoulding immediately after manufacture (Walker 2013) and others keeping the concrete in the moulds for the full duration of curing with only 1 or 2 faces exposed (Arnaud and Gourlay 2012). Demoulding after 1 to 6 days is a popular option used by several authors: 1 day (Nguyen et al. 2009); 1 day followed by sealing until 5 days (Colinart et al. 2012); 2 days (Nozahic et al. 2012) and 6 days (Hirst et al. 2010). As a result of the high moisture permeability of the concrete, fast drying can occur when the specimens are quickly removed from their moulds and left to cure unwrapped at 60% RH. As aforementioned, fast drying reduces available water and halts and retards hydration of binders with quick set however it can be beneficial for binders with low hydraulic content.
Specimen geometry may affect ultimate strength. Previous authors have found that using hydraulic limes, half prisms are on average 37% stronger than cubes, and that this may be due to the ratio of length to height which determines how strains build up in the specimen (Patterson and Pavía 2012). In PC mortar and concrete, cubes are reported to be stronger than cylinders. A factor of 1.2 is used to convert cylinder to cube strength for normal strength concrete. However, this factor becomes smaller as strength increases so that, for high-strength concrete, the influence of shape is much less significant (Yi et al. 2006 citing Gonnerman 1925, Gyengo 1938, Murdock and Kesler 1957). In PC composites, it has also been found that strength is an inverse function of the specimen size for cubic and prismatic samples whereas for larger cylinders the effect of size on strength is almost negligible (Yi et al. 2006; Del Viso 2008).

In hemp-lime concrete, specimen geometry widely varies in research – cylinders, blocks and small scale walls of varying scales have been investigated. Some examples include 50mm cubes (Elfordy 2008; Collet 2013); 40*40*160mm prisms (Nozahic et al. 2012); 300*300*160mm blocks (Colinart et al. 2012); 100mm (d) *50mm(h) cylinders (Collet 2013), 190mm (d) *35mm (h) cylinders (Evrard 2006); 100mm cubes (Walker and Pavia 2014); 160mm (d)*320mm (h) cylinders (Arnaud and Gourlay 2012); 150mm (d)*300mm (h) cylinders (Hirst et al. 2010). Collet (2004) notes that 50mm cubes are representative of the material however, cylinders are typically more common for compression testing although 100mm cubes (Elfordy 2008; Walker and Pavia 2014) have also been used.

Glouannec (2011) compared different geometry specimens and observed similar compressive strengths although their behaviour on load application differed. Tall specimens (height>width) showed a clear fracture plain, and their maximum compressive strength was followed by a decrease in stress. In contrast, stout specimens (height<width) crushed continuously.

9.1 Materials and methods

As aforementioned, in order to investigate the effect of some production parameters, standard tests were performed with two binders: a 50%CL90s / 50% CEMII binder and a 100% NHL3.5. Testing parameters that impact the material properties including the effect of curing conditions (65% vs>95% RH), time of demoulding, specimen geometry (cylinder vs cube) and re-hydration on compressive strength were studied.
Manufacture (mixing, curing and compaction)

The mix proportions were constant at 1: 2: 3.1 (hemp: binder: water). The binder was dry mixed by hand to ensure it was homogenous. The binder and ¾ of the water were placed in a drum cement mixer and mixed for 2.5 minutes to form a slurry. The hemp was then gradually added along with the remaining water. The mixer was stopped half way through mixing to break up any clumps formed in the material. The total mixing time was 7 minutes.

Control mixes and further specimens were produced according to the parameters in Table 9.1. For the preparation of control mixes, the concrete was weighed and put into 100mm cubic moulds in a single layer. It was lightly compressed by hand as it was put into the mould. The control samples were immediately removed from their moulds and transferred to a curing room at 20°C±2°C and 60±5% RH until testing.

The specimens retained in moulds were coated with three layers of oil to facilitate removal. The samples had an initial wet density of 680kg/m³. Following drying, the control concrete achieved an approximate density of 400kg/m³ and 379kg/m³ for the CL90: CEMII and NHL3.5 binders respectively.

Four specimens of each binder were fabricated with each of the testing variables in Table 9.1 and tested at 1 day and 1, 2, 4 and 10 weeks.

In addition, five cubes of each mix were immersed for two days in a water bath after one month of curing to induce re-hydration, these cubes were then removed and left to cure at normal temperature and humidity and tested at 10 weeks.

Compressive strength

Compressive strength was measured using a Zwick testing apparatus. The cubes were removed from the curing room at 1 day and 1, 2, 4 and 10 weeks and oven dried at 50°C for 24 hours prior to testing. Oven drying was necessary to measure early changes in strength development as samples up to 2 weeks are so wet (the CL90:CEMII and NHL3.5 concretes retain approximately 51% and 64% of the original mixing water respectively at 2 weeks), that they only compress under load application and consequently small changes in strength development are not discernible. Oven drying enhanced the sample’s strength and allowed early changes in strength to be measured. Concrete strength arises from a combination of drying and binder carbonation/hydration. The contribution of drying is considered to remain the same for all samples dried and therefore the impact of binder hydration/carbonation can be seen in the increasing compressive strength.
No standards currently apply to hemp concrete thus the testing procedures of EN 459-2 and EN 196-1 were used to guide the test. The cubes did not break but continuously deformed in a plastic manner. Failure was considered as the point at which the stress/strain curve departs from linear behaviour. Student’s t-Tests were carried out to determine if the results were statistically significant (P < 0.05).

Table 9.1 Summary of variables in concrete specimens tested. Four specimens of each binder (CL90: CEMII and NHL3.5) were fabricated with each of the 4 testing variables in the table. Hemp: binder: water = 1:2:3.1. All dried for 24 hours prior to testing.

<table>
<thead>
<tr>
<th>Testing variables</th>
<th>Wet weight (g)</th>
<th>Size/Geometry</th>
<th>Curing conditions</th>
<th>Time in mould (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>680</td>
<td>100 mm cube</td>
<td>20°C±2°C 60±5% RH</td>
<td>0</td>
</tr>
<tr>
<td>Curing humidity</td>
<td>680</td>
<td>100 mm cube</td>
<td>20°C±2°C >95% RH</td>
<td>0</td>
</tr>
<tr>
<td>Time of demoulding</td>
<td>680</td>
<td>100 mm cube</td>
<td>20°C±2°C 60±5% RH</td>
<td>70</td>
</tr>
<tr>
<td>Specimen shape</td>
<td>1070 (to maintain a wet density of 680 kg/m³)</td>
<td>Cylinder d=100 h=200mm</td>
<td>20°C±2°C 60±5% RH</td>
<td>70</td>
</tr>
</tbody>
</table>

9.1.3 Microstructure

Investigating the microstructure of the concrete should reveal the presence of carbonates and hydrates that contribute to strength. The microstructure of the binder and the surface of the hemp aggregate were investigated using a Tescan MIRA Field Emission Scanning Electron Microscope (SEM). The samples were freshly fractured and covered with a gold coating in an 'Emscope SC500' plasma coating unit. Individual hemp particles were extracted from fractured surfaces and mounted on pin stubs prior to coating. Samples were sealed in air tight conditions until the analysis was undertaken.
9.2 Results

9.2.1 Compressive strength and microstructure

Compressive strength increase (Figure 9.1) is evident up to 28 days however, later, the increase was not statistically significant (P>0.05). This indicates that both binders achieved most of their entire compressive strength in the first month.

SEM analysis evidenced hydrates responsible for strength development at 1 day, increasing significantly by 1 month (Figure 9.2 to Figure 9.5). Hydrates were present in both concretes however, they were substantially more prolific in the CL90: CEMII binder than in the NHL3.5 binder (Figure 9.2 to Figure 9.5).

The CL90: CEMII concrete achieved a considerably greater strength than the NHL3.5 concrete (Figure 9.1) due to its greater hydraulic content - see Figure 9.2 to Figure 9.5 below.

![Figure 9.1 Strength development of the concretes over time.](image)
Figure 9.2 SEM microstructure of the hydrated CL90: CEMII binder at 1 day showing significant, calcium silicate hydrate (CSH), ettringite and portlandite.

Figure 9.3 SEM microstructure of the hydrated CL90: CEMII binder at 1 month with abundant CSH, ettringite, cubic hydrates and carbonates.
Figure 9.4 NHL3.5 binder at 1 week showing scarce, large, needle-shaped hydrates and carbonates.

Figure 9.5 NHL3.5 binder at 1 month including significant hydrates and carbonates.
Figure 9.6 Effect of testing variables on compressive strength of concretes after 10 weeks of curing. 1- Control specimens (100mm cubes, cured at 65% RH, straight out of mould); 2- cubes re-immersed; 3- cubes cured at >95% RH; 4- cylindrical concrete specimens; 5-cubes retained in moulds.

Re-immersion in water in order to trigger re-hydration (for two days after the 1st month of curing) shows a decrease in compressive strength for both concretes but it is not statistically significant.

Curing at 95% RH reduces the compressive strength of CEM: CL90 (50/50) and has no significant effect on NHL3.5.

There is no significant difference in the compressive strength of cubes and cylinders however the strain on load application is different in cubes and cylinders (different stress vs stain curves). Some of the NHL3.5 cylinders broke during demoulding (binder was too weak and the results not valid).

Curing in moulds significantly increases compressive strength of CEM: CL90 binder but has no significant effect on the NHL3.5 concrete. Keeping the concrete in moulds during curing allows closer conditions to real curing inside the wall.

The excess moisture in the concretes kept in the moulds enhances hydration to a greater extent than the high moisture vapour in high (90%) RH curing environments.

These results are analysed in more detail below.

9.2.2 Effect of oven drying on compressive strength

As aforementioned, the concretes were oven dried to remove the high moisture content and be able to measure early strength changes. The compressive strength of the concrete is due to carbonation and hydration of the binder together with dry-
ing which increases stiffness at early ages. Strength contribution due to drying should be consistent for all samples independent of age or binder type.

The compressive strength of the NHL 3.5 concrete at 1 day is 0.03MPa and the SEM analysis evidenced some hydrates at this stage. This suggests that the contribution of drying towards compressive strength is less than 0.03MPa.

The strength of CL90: CEMII concrete specimens that were oven dried for 24 hours following 28 days of curing was compared with the strength of those not oven dried. The average compressive strength was 0.25MPa and 0.27MPa for the 28 day (non-oven dried) and 28-day oven dried respectively. The difference in results is not statistically significant (P>0.05). This suggests that oven drying at low temperatures, does not impact the strength performance of hemp concrete.

9.2.3 Effect of curing at high RH on strength

Curing the hemp-lime concrete at high RH (>95%) was found to reduce the compressive strength of the CL90: CEMII concrete at 10 weeks (Figure 9.6). The NHL3.5 concrete shows the same trend, although the results are not statistically significant. The lack of statistical significance may be on account of the little strength of the NHL3.5 concrete (0.07MPa) resulting in low measurement sensitivity of the testing equipment.

The findings are similar to those of Arnaud and Gourlay (2012) who observed that 90% RH during curing reduced mechanical strength of four hydraulic binders.

The CL90: CEMII binder shows significant hydrates at 1 month (Figure 9.3). It is unclear why the presence of water vapour during curing at high RH does not contribute to binder hydration and consequently increase strength as it would in the case of mortars.

9.2.4 Effect of retention in moulds during curing

Retention of the concrete in its mould will delay drying, as moisture is blocked from escaping through the mould and drying is largely restricted to the uncovered sides.

Retaining the hemp-lime concrete in its mould during curing was found to increase the compressive strength of the CL90: CEMII concrete at 10 weeks (Figure 9.6). It is likely that the presence of moisture for longer periods (delayed from drying by the mould) facilitates the formation of additional hydrates which enhance strength.
The effect of retaining the NHL3.5 concrete in its mould during curing on strength is not statistically significant. This may be due to lack of measuring instrument sensitivity at low strength values. However, it is also likely that the presence of moisture is less beneficial to the NHL3.5 binder on account of its lower hydraulic content and higher hydrated lime content.

9.2.5 Effect of specimen geometry on strength

Specimen size and shape determine the surface area available for drying which may affect binder hydration/carbonation therefore compressive strength. For example, a 100mm cube has a larger surface area than a cylinder with a 100mm diameter and 100mm height and will consequently dry faster. As aforementioned, geometry also determines the ratio of length to height which dictates how strains build up in the specimen and hence its strength.

In order to establish the effect of geometry on strength and exclude the effect of drying, a comparison was made between the performance of a cube and a cylinder of CL90: CEMII concrete cured in their moulds to avoid the influence of drying (Table 9.1).

The results (Figure 9.6) indicate that the specimen geometry does not significantly impact the compressive strength. This agrees with Glouannec (2011) who observed similar compressive strengths for tall and stout specimens.

However, the results evidenced that geometry affects the concrete’s behaviour in compression; a summary of the most representative stress vs strain results obtained is included in Figure 9.7.

As it can be seen from this figure, the cylinders fail following a high stress point or yield point, after which the stress drops (the concrete cannot longer sustain stress). In contrast, following a similar high stress point to that of the cylinders, the cubes continuously deform, showing a large plateau (region of increasing strain for small stress increase) followed by a raising branch where stress increases rapidly in relation to the strain. Elfordy (2008) attributed this to the irreversible compaction of the porous hemp shiv.

As discussed in Walker and Pavía (2014), the final behaviour of the cubes (stress increase) is produced when most hemp cells have collapsed and, as the cells are further compressed, contact between opposing cell walls occurs, resulting in the formation of mechanical bridges which lead to an increase in the stiffness of the material. A similar behaviour has been observed in other cellular solids (Daxner 2010).

Therefore, both geometries typically show three stages in their stress-strain evolution: the first two (linear and plateau stages) are common. However the plat-
eau stage is short for the cylinders and is followed by failure whereas the cubes show a long plateau (increased deformation) followed by a stress increase due to the additional stiffness produced by contact between opposing cell walls.

The variation specimens behaviour is similar to that reported by Glouannec (2011) who observed that tall specimens (height>width) had a clear fracture plain and the maximum compressive strength was followed by a decrease in stress while stout specimens (height<width) crushed continuously. The cylindrical NHL3.5 binder samples crumbled during demoulding and the results are therefore disregarded.

![Typical stress vs strain behaviour of hemp concrete varying with specimen geometry.](image)

Figure 9.7 Typical stress vs strain behaviour of hemp concrete varying with specimen geometry.

9.3 Conclusion

Both concretes achieved most of their compressive strength in the first month. The CL90: CEMII concrete achieved a considerably higher strength than the NHL3.5 concrete probably due to its greater hydraulic content (hydrates were much more prolific in the CL90: CEMII binder).

Curing hemp-lime concrete with hydraulic content (50%CL90: 50%CEMII) at high RH (>95%) lowers compressive strength (65.4% drop at 10 weeks). It is unclear why this happens, as the presence of water vapour during curing at high RH should enhance hydration and consequently increase strength. The NHL3.5 concrete shows the same trend although the results are not statistically significant.

Retaining the hemp concrete in moulds during curing increases compressive strength of the CL90: CEMII concrete (a 22.9% increase measured at 10 weeks). This is probably due to the presence of moisture for longer enhancing hydrate
formation. The NHL3.5 concrete shows the same trend although the results are not statistically significant.

The lack of statistical significance of NHL3.5 concrete results may be due to lack of sensitivity of the measuring instrument at low strength values.

The specimen geometry does not significantly impact the ultimate compressive strength of hemp-lime concrete however, it affects the concrete behaviour under a compressive load.

Initially, cylinders and cubes deform on load application up to a similar yield point. Following this yield point, the cylinders fracture whereas the cubes keep crushing to finally experience an additional stiffness produced by mechanical bridges between opposing cell walls.

Drying hemp concrete at 50°C, allows to monitor early strength development and does not impact strength performance. Strength contribution by drying in hemp concrete is small (e.g. less than 0.03MPa in NHL 3.5 concrete).

Acknowledgments

All testing was carried out in the Dept. of Civil Engineering, Trinity College Dublin. The authors thank Dr. Kevin Ryan and Michael Grimes for their assistance with testing. The authors also wish to thank the Traditional Lime Company and Clogrennane Lime for the provision of materials. The authors thank Dr Heath Bagshaw (Centre for Microscopy and Analysis) for his assistance with the SEM. This research follows up from a former research project funded by the Environmental Protection Agency and it is largely based upon experimental work published in: ‘Effect of testing variables on the hydration and compressive strength of lime hemp concrete’ S. Pavia, R. Walker, J. McGinn. First Int. Conf. on Bio-based Building Materials June 22nd - 24th 2015 Clermont-Ferrand, France

References

Del Viso, J.R.; Carmona, J.R.; Ruiz, G.; Shape and size effects on the compressive strength of high-strength concrete. Cement and Concrete Research, 2008, 38, 5, 386-395.

EN 196-1-2005 Methods of testing cement. Determination of strength.

EN 459-2:2010 Building lime. Test methods

Murphy, F.; Pavia, S.; Walker, R.; An assessment of some physical properties of lime hemp concrete. In: NiNuallain; Walsh; West; Cannon; et al. eds., Bridge Infrastructure Concrete Research Ireland, University of Cork, 2010, 431 – 438.

APPENDIX

Technical Commitee Report

Rilem TC 236 BBM

Bio based Building Materials

Round Robin test for hemp shiv CHARACTERISATION
AUTHORS OF THE TC REPORT

Sofiane Amziane\(^{(1)}\), Florence Collet\(^{(2)}\), Mike Lawrence\(^{(3)}\), Camille Magniont\(^{(4)}\), Vincent Picandet\(^{(5)}\)

1: Chair of RILEM TC-BBM 236, Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr
2: LGCGM, Université Rennes 1, Rennes, France, florence.collet@univ-rennes1.fr
3: BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK, m.lawrence@bath.ac.uk,
4: Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), camille.magniont@insa-toulouse.fr
5: Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, vincent.picandet@univ-ubs.fr

TC 236 BBM Members

Chairman:
Sofiane AMZIANE, Institut Pascal, Clermont Université, France.

Secretary:
Florence COLLET, Université de Rennes 1, LGCGM, France.

TC Members:
Laurent ARNAUD, Ecole Nationale Supérieure d’Arts et Métiers, ENSAM Cluny, France.
Laëtitia BESSETTE, Centre Technique Louis VICAT, L’Isle d’Abeau, France.
Paulien DE BRUIJN, Lund University, Faculty of Engineering (LTH), Dept of Building Materials, Lund, Sweden.
Samuel DUBOIS, Université de Liège (Ulg), Gembloux Agro-Bio Tech, Belgique.
Gilles ESCADEILLAS, Université de Toulouse, UPS, INSA, LMDC, France.
Harald GARRECHT, Universität Stuttgart, Institut für Werkstoffe im Bauwesen (IWB), Stuttgart, Deutschland.
Etienne GOURLAY, CETE de l'Est - Laboratoire Régional de Strasbourg, France.
André KLATT, Universität Stuttgart, Institut für Werkstoffe im Bauwesen (IWB), Stuttgart, Deutschland.
Christophe LANOS, Université de Rennes 1, LGCGM, France.
Mike LAWRENCE, University of Bath, BRE Centre for Innovative Construction Materials, UK.
Camille MAGNIONT, Université de Toulouse, UPS, INSA, LMDC, France
Sandrine MARCEAU, Université Paris-Est, IFSTTAR, France.
Sara PAVÍA, Department of Civil Engineering, Trinity College, Ireland.
Ulrike PETER, Lhoist, Lhoist Recherche et Développement S.A., Belgium.
Vincent PICANDET, IRDL, Université de Bretagne Sud, France
Mohammed SONEBI, School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, UK.
Peter WALKER, University of Bath, BRE Centre for Innovative Construction Materials, UK.
Other contributors:
Thibaut COLINART, IRDL, Université de Bretagne Sud, France.
Guillaume DELANNOY, Université Paris-Est, IFSTTAR, France.
Yunhong JIANG, University of Bath, BRE Centre for Innovative Construction Materials, UK.
César NIYIGENA, Institut Pascal, Clermont Université, France.
Vincent NOZAHIC, Institut Pascal, Clermont Université, France.
Sylvie PRETOT, Université de Rennes 1, LGCGM, France.
Pierre TRONET, IRDL, Université de Bretagne Sud, France.
Table of Contents

Round Robin test for hemp shiv characterisation: 227

Part 1 : Evaluation of initial water content and water absorption
1 Introduction 228
2 Material 229
 2.1 Microscopical description 230
3 INITIAL WATER content 235
 3.1 Methods 235
 3.2 Results 236
 3.3 Concluding remarks on initial water content 237
4 Water absorption 238
 4.1 Description of the experimental methods: 238
 4.2 Results 239
 4.3 Concluding remarks 242
SUMMARY of findings 242

Round Robin test for hemp shiv characterisation: 244

Part II : Bulk Density and Particle Size Distribution 244
5 Introduction 245
6 Material 246
7 Bulk Density 247
 7.1 Methods 247
 7.2 Results 248
 7.3 Concluding remarks on bulk density 250
8 Particle Size Distribution 252
 8.1 Sieving method 252
 8.1.1 Fibre content 254
 8.1.2 Dust content 254
 8.2 Image processing 255
 8.2.1 Picture acquisition 255
 8.2.2 Image analysis 255
 8.2.3 Measurements 255
 8.2.4 Shape descriptors 256
 8.2.5 Characterisation of size distributions 256
 8.2.6 Comparison of image analysis methods 258
 8.2.7 Comparison of collected results. 259
 8.3 Comparison between sieving and image analysis results 263
 8.4 Concluding remarks on Particle Size Distribution 264
Round Robin test for hemp shiv characterisation:

Part 3 : thermal conductivity

9 Introduction
10 Material
11 Thermal conductivity
 11.1 Experimental methods
 11.1.1 Guarded hot plate
 11.1.2 Hot wire
 11.2 Results
 11.2.1 Hot plate
 11.2.2 Hot wire
 11.2.3 Synthesis
 11.3 Concluding remarks

SUMMARY of findings
ACKNOWLEDGEMENTS
ROUND ROBIN TEST FOR HEMP SHIV CHARACTERISATION:

PART 1 : EVALUATION OF INITIAL WATER CONTENT AND WATER ABSORPTION

Authored by: Sofiane Amziane(1), Florence Collet(2), Mike Lawrence(3), Camille Magniont(4), Vincent Picandet(5)

1: Chair of RILEM TC-BBM 236, Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr
2: LGCGM, Université Rennes 1, Rennes, France, florence.collet@univ-rennes1.fr
3: BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK, m.lawrence@bath.ac.uk,
4: Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), camille.magniont@insa-toulouse.fr
5: Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, vincent.picandet@univ-ubs.fr

With the contribution of:

6: Laurent Arnaud, Art et Métiers, ENSAM Cluny, laurent.arnaud@ensam.eu
7: Thibaut Collinart and Pierre Tronet, Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, thibaut.collinart@univ-ubs.fr, pierre.tronet@univ-ubs.fr,
7: Vincent Nozahic, Institut Pascal, Clermont Université, France, vincent.nozahic@hotmail.fr
8: Etienne Gourlay, CETE de l'Est - Laboratoire Régional de Strasbourg, etienne.gourlay@developpement-durable.gouv.fr
9: Sandrine Marceau, Paris-Est, IFSTTAR, MAST, Marne-La-Vallée, France, sandrine.marceau@ifsttar.fr
10: Gilles Escadillas, Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Gilles.Escadillas@u
11: S. Dubois, Université de Liège (Ulg), Gembloux Agro-Bio Tech, Belgique, s.dubois@student.ulg.ac.be
12: Laetitia Bessette, Centre Technique Louis VICAT, L'Isle d'Abeau, France, L.Isle d'Abeau, l.bessette@vicat.fr
13: Paulien Debruijn, Lund University, Faculty of Engineering (LTH), Dept of Building Materials, Lund, Sweden, pbdebruijn@gmail.com
14: Ulrike Peter, Lhoist, Lhoist Recherche et Développement S.A., Belgium, ulrike.peter@lhoist.com
15: Sara Pavia, Dept of Civil Engineering, Trinity College Dublin, Ireland, PAVIAS@tcd.ie
Abstract
The paper presents the experience of a working group within the RILEM Technical Com- mitee 236-BBM ‘Bio-aggregate-based building Materials’. The work of the Technical Commit- tee (TC) will be to study construction materials made from plant particles. These materials are obtained from the processing of hemp, flax, miscanthus, pine, maize, sunflower, bamboo and others. The first round robin test of the TC-BBM was carried out to compare the proto- cols in use by the different laboratories (labs) to measure initial water content, bulk density, water absorption, particle grading and thermal conductivity. The aim is to define a characteri- sation protocol derived from those used by the different labs. This first round robin test was carried out on one variety of hemp shiv. Nine laboratories from European universities and re- search centers were involved (Table 1). The test results of 7 laboratories constitute a set of statistically representative data in order to propose recommendations to characterise hemp shiv after analysing the different methodologies in use in these labs.

Table 1. Participating Labs

<table>
<thead>
<tr>
<th>Letter</th>
<th>City</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bath (UK)</td>
<td>BRE Centre for Innovative Construction Materials / University of Bath</td>
</tr>
<tr>
<td>B</td>
<td>Clermont Ferrand (France)</td>
<td>Institut Pascal</td>
</tr>
<tr>
<td>C</td>
<td>Lorient (France)</td>
<td>LIMatB / Université de Bretagne Sud</td>
</tr>
<tr>
<td>D</td>
<td>Lyon (France)</td>
<td>DGCR / ENTPE</td>
</tr>
<tr>
<td>E</td>
<td>Paris (France)</td>
<td>IFSTTAR</td>
</tr>
<tr>
<td>F</td>
<td>Rennes (France)</td>
<td>LGGM/Rennes 1</td>
</tr>
<tr>
<td>G</td>
<td>Toulouse (France)</td>
<td>LMDC / Université de Toulouse / UPS/INSA</td>
</tr>
<tr>
<td>I</td>
<td>Combloux (Belgium)</td>
<td>Combloux-Agro ressource – Université de Liège</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
This study focus on bio-based aggregate coming from the stem of plants cultivated either for their fibers (hemp, flax, etc.) or for their seeds (oleaginous flax, sunflower, etc.). Owing to the structure of the stem of the plant they are made from, such aggregates are generally malleable, elongated and highly porous with a low apparent density. They are very different from the mineral aggregates typically used in concretes, for which there are standardised tools and techniques for characterisation. Amongst these, hemp shiv (the woody core of the stem of the hemp plant) is probably the most widely used in alternative or eco-friendly building materials in Europe and is also representative of most of the aggregate coming from the stem of an annual crop. This is usually mixed with a lime-based binder and the resultant ‘bio-concrete’ is known as ‘hemp-lime’.
This kind of aggregate is a co-product of hemp industry that is renewable and produced in an annual cycle while the price of mineral aggregates is steadily increasing as resources become less readily available. The characterisation of these aggregates, however, which is crucial to a proper understanding of the quality of the materials in which they are incorporated, requires adaptations to be made to the techniques usually employed for mineral aggregates, or the devising of new characterisation procedures.

The first round robin test of the Rilem TC-BBM was carried out to compare the protocols in use by the different labs. The aim was to define a test method to measure initial water content and water absorption of bio aggregates. This first round robin test was carried out with one variety of hemp shiv (the woody core of the plant stalk chopped into lengths of a few centimeters) coming from the same production of a processing factory located in France. Seven labs conducted the measurements (Table 2).

Table 2. Description of the interlaboratory test

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participating Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial water content</td>
<td>B, F, G</td>
</tr>
<tr>
<td>Water absorption</td>
<td>A, B, C, D, E, F, G</td>
</tr>
</tbody>
</table>

2 MATERIAL

One variety of hemp shiv was selected for this inter-laboratory test. It comes from the same processing factory where the bast fibers are stripped off (de-cortification), leaving the shiv behind. This shiv was provided by LCDA producer under the commercial name “KANABAT” (Tables 3 and 4). This shiv is in line with the French national recommendation provided by “Construire en Chanvre” association (Table 5) [1].

Table 3. Physical properties of shiv as supplied by the producer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>100 to 110 kg/m³ (depending on ambient relative humidity) Loosely packed, not compressed</td>
</tr>
<tr>
<td>Water absorption</td>
<td>198% (NFV 19 002)</td>
</tr>
<tr>
<td>Water absorption of mineral elements</td>
<td>24 meq per 100g of raw material</td>
</tr>
<tr>
<td>Calorific value</td>
<td>3804 cal/g (NF M 07-030 12/9G)</td>
</tr>
<tr>
<td>Thermal Conductivity (10°C in a dry state)</td>
<td>0.0486 W/m.K (NF EN12667)</td>
</tr>
</tbody>
</table>
Table 4. *Chemical composition of the shiv* as supplied by the producer*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>9 to 13 %</td>
</tr>
<tr>
<td>Dry material</td>
<td>85 to 90% of which</td>
</tr>
<tr>
<td>Total organic material</td>
<td>97.5 % on a dry basis of which:</td>
</tr>
<tr>
<td>Net cellulose:</td>
<td>52%</td>
</tr>
<tr>
<td>Lignin:</td>
<td>18%</td>
</tr>
<tr>
<td>Hemicellulose:</td>
<td>9%</td>
</tr>
<tr>
<td>Minerals:</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>1% on a dry basis</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.03% on a dry basis</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>9 mg/100g</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.8% on a dry basis</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.4 to 1% on a dry basis</td>
</tr>
<tr>
<td>Total carbon</td>
<td>496 g/kg on a dry basis</td>
</tr>
<tr>
<td>C/N</td>
<td>87</td>
</tr>
<tr>
<td>Ash</td>
<td>2%</td>
</tr>
<tr>
<td>pH in suspension at 10%</td>
<td>6.7</td>
</tr>
</tbody>
</table>

*These data are supplied as indicative, certain values can vary depending on the year, the variety, the cultivation location etc.

Table 5. French national recommendations for the shiv characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent density of particles in kg/m³</td>
<td>Quoted apparent density +/- 15 %</td>
</tr>
<tr>
<td>Maximal length (L_{max} in %)</td>
<td>Quoted L_{max} +/- 10 %</td>
</tr>
<tr>
<td>Initial moisture content</td>
<td>< 19 %</td>
</tr>
<tr>
<td>Dust content</td>
<td>< 2% passing a 0.25 mm sieve</td>
</tr>
<tr>
<td>Colour</td>
<td>% of particles not conforming < 5%</td>
</tr>
</tbody>
</table>

2.1 Microscopical description

Specimens of hemp shiv were examined at the University of Bath, both longitudinally with the capillaries and transversely across them, using a JEOL 6840 scanning electron microscope in the secondary electron mode at 15kV voltage and a working distance of 10mm. Figure 1 shows a scanning electron microscope view at x250 magnification of a transverse section.

The surface of the shiv has been torn by the sawing process used in the preparation of the thin sections, which makes this image slightly more difficult to interpret. However the two porosities are still visible. In the centre of the image is a xylem capillary, and it can be seen that there are much smaller pores visible on the cell wall. Figure 2 shows this capillary at
x1000 magnification. It can be seen that the cell wall is penetrated by numbers of pores with diameters of between 1µm and 5µm. In fact these pores are known as ‘pits’ and consist of a thin membrane which allows water vapour to pass, but not liquid water. This is the mechanism by which the parenchyma are fed with nutrients and moisture from the xylem.

Figure 8: Scanning Electron Microscope view of hemp shiv (x250)
We thus have three distinct macroporosities in hemp shiv – the xylem at ~50µm, the parenchyma at ~20µm and the pits at ~1µm to 5µm. Given that the parenchyma are closed cells accessible to each other and to the xylem via the pits, this creates an interesting scenario which can be used to explain the latent heat effects believed to occur in hemp-lime. Figure 3 shows a schematic of water vapour flow through hemp shiv. In this schematic, the water vapour passes along the large xylem capillaries (diameter ~50µm). In order to access the parenchyma pores (~20µm in diameter) the vapour has to pass through the 1µm to 5µm pits. In order for this to happen, there must be a partial pressure differential between the vapour pressure in the xylem and that in the parenchyma.
Figure 3. Schematic of water vapour flow through hemp shiv

At IFSTTAR similar images have been taken using a Philips XL SEM in secondary electron mode at 20kV and a working distance of 10mm.
The mean diameter of the pores was measured at 10-30 µm (Figure 4). Similar images were taken of longitudinal sections (Figure 5) showing lengths of the pores of between 20µm and 80µm.
3 INITIAL WATER CONTENT
As with other lignocellulosic materials, hemp shiv is known to present a high hygroscopic behaviour. The water content of hemp shiv will then be largely influenced by relative humidity of air at the time of bagging or mixing. This property needs to be assessed as it can strongly influence the mix proportioning of hemp-lime and consequently the properties of hardened hemp-lime.

3.1 Methods
The initial water content of hemp shiv is calculated from the following relation:

\[W_0 = \frac{M_0 - M_D}{M_D} \times 100 \] eq. 1

Where \(W_0 \) is the initial water content [%], \(M_0 \) is the initial mass of the sample [g] and \(M_D \) is the mass of dry sample [g].
Experimental protocols applied by labs B, F and G differ one from the others in the size of sample and the drying methods described in Table 6.

Table 6. Experimental protocols to measure the dry mass of the sample

<table>
<thead>
<tr>
<th>Labs</th>
<th>Size of the sample and drying method</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>- Size of the sample around 120 g</td>
</tr>
<tr>
<td></td>
<td>- Drying of the plant aggregates in an oven at 60°C for 48h</td>
</tr>
<tr>
<td>F</td>
<td>- Size of the samples: between 150 and 650 g</td>
</tr>
<tr>
<td></td>
<td>- Drying of the plant aggregates:</td>
</tr>
<tr>
<td></td>
<td>Method 1: in an oven at 60°C with silica gel until the change in mass of the sample was less than 0.1% over 24 hours</td>
</tr>
<tr>
<td></td>
<td>Method 2: under vacuum with silica gel (evaporation by all the surfaces of the sample) until the change in mass of the sample was less than 0.1% over 24 hours</td>
</tr>
<tr>
<td></td>
<td>Method 3: under vacuum with silica gel (evaporation by the upper surface only) until the change in mass of the sample was less than 0.1% over 24 hours</td>
</tr>
<tr>
<td>G</td>
<td>- 3 different sizes of samples: 5, 10 and 250 g.</td>
</tr>
<tr>
<td></td>
<td>- Drying of the plant aggregates in an oven at 50°C until the change in mass of the sample was less than 0.1% over 24 hours</td>
</tr>
</tbody>
</table>

3.2 Results

Figure 6 shows a synthesis of the results obtained by the three participating labs.

We can see on Figure 7 that the initial water contents measured by the different labs are similar. The average value from all these data is 10.9% with a standard deviation of 0.6%. Results do not reveal any significant effect due to the size of sample.
Figure 7 shows a comparison between the five different drying methods used. No significant differences can be identified. Including the three different drying methods applied by Lab F results in comparable values of initial water content. Nevertheless, comparing the kinetics of the three drying methods, Lab F found that the drying method in the oven at 60°C allows equilibrium to be achieved faster than the methods using silica gel under vacuum (7 days against 1 month).

Comparing the results of Lab F-1 (drying in an oven at 60°C) and Lab G (drying in an oven at 50°C) we can conclude that a drying temperature between 50°C and 60°C is suitable for the measurement of initial water content of plant aggregates.

3.3 Concluding remarks on initial water content

The results from all the labs are to each other. The average value of initial water content is 10.8% with a standard deviation of 0.6%. To reduce the discrepancy of the results and propose a fast and easy to process testing method, we propose the adoption of the following protocol:

1. Weigh an initial mass of aggregates \(m_0\) (g) \((m_0 > 50\text{g})\).

2. Dry the material at a temperature between 50°C and 60°C until constant mass is reached (change in mass of the sample less than 0.1% over 24 hours).

3. Weigh the dry mass of aggregates \(m_D\) (g).

Calculate the initial water content \(W_0\) (%): \[W_0 = \frac{M_0 - M_D}{M_D} \times 100\]

4. Repeat the test 3 times (with 3 different samples of shiv)
4 WATER ABSORPTION

The hygroscopic behavior of lignocellulosic plants is largely due to their hydrophilicity. Their complex architecture is marked by a multi-scale porosity in order to conduct the necessary fluids for their development (sap and water). Even after cutting and processing, this porosity continues to play its role and is therefore the main way of absorption of water following the Laplace laws. This absorption occurs mainly by conducting vessels or tracheids before the water spreads to the rest of the cells by diffusion through the cell walls and punctuation.

4.1 Description of the experimental methods:

Table 7. Experimental protocol to measure the water absorption

<table>
<thead>
<tr>
<th>Labs</th>
<th>Method</th>
</tr>
</thead>
</table>
| A | Three tests are presented by Lab A following this protocol:
Approximately 50g shiv placed in a metal wire sieve
Second sieve placed on top of shiv
Two sieves sealed together with waterproof tape
Approximate thickness of shiv layer is 5-10mm
Assembly is fully submerged into water
When assembly is removed, it is shaken thoroughly to remove all free water. This is critical, as considerable amounts of free water can be held between the particles.
Tests 2 and 3 were shaken more thoroughly than test 1 |
| B | The test is based on the following protocol:
Fill with water and drain the container (Step 1 of Figure 16);
Weigh 20g of dry hemp shiv (60°C, 48h) in the humid container (Step 2 of Figure 16);
Cover the container with a sieve and fill it with water through the sieve (Step 3 of Figure 16);
After a determined immersion time, drain the container from its water through the sieve. User must wait for the last drop to fall! (Step 4 of Figure 8)
Weigh the wet particles and calculate the water absorption ratio W(t) (Step 5 of Figure 16). |
| C | The test is based on the following protocol: |

Figure 8: Protocol of Lab B
- For each measurement, one sample (100 g) is soaked continuously till measurement and then dried until constant weight in an oven at 60°C
- For each sample, at each time interval, two measurements are conducted (except after one hour).

D
- Weigh approximately 50 g of hemp shiv sieved under 80μm and dried 48 hours in an oven at 80°C
- Immerse the shivs in a bucket containing about 5 liters of water
- At time t, pour the content of the bucket into another bucket on which is disposed a 80μm sieve. We get wet shiv on one side and water on the other.
- Weighing the bucket of water before and after immersion of the shivs gives access to the amount of water absorbed during the time interval t.

E
- Drying of the particles in an oven for 48 hours at 40°C; Three specimen of particles were tested for each drying temperature
- g of particles are immersed in water at 20°C
- After each measurement, the particles are quickly spread on an absorbent tissue and weighed

F
- Samples of dry hemp shiv (around 18 g) are placed in a basket
- They are immersed and weighed after 30 minutes, 4 days and 5 days of immersion
- The water content is then calculated

G
The initial state of the plant aggregates was obtained by drying in an oven at 50°C until the change in mass of the sample was less than 0.1% over 24 hours.

Samples constituted of 5 g of particles were then immersed in water and the gain in mass was measured after 5, 10, 15, 30, 60 minutes and 24 hours. Before each weighing, plant aggregates were strongly drained and promptly superficially dried with absorbent paper, this method eliminated part of the water adsorbed at the surface of particles or located between particles.

The results presented are mean values of measurements taken on 5 different samples.

4.2 Results

The water absorption capacity of these aggregates was determined gravimetrically by applying the following expression:

\[
W(t) = \frac{M(t) - M_0}{M_0} \times 100
\]

where \(W(t) \) [%] is the water absorption ratio at time \(t \) [g], \(M(t) \) the soaked bio aggregate mass at time \(t \) [g], and \(M_0 \) is the initial oven-dried aggregate mass [g].

\(W_{MAX} \) [%] was measured after soaking for 48 hours (see table 7).
High porosity and internal structuring of shiv are responsible for a high water absorption and retention capacity (Figure 9 and 10).

Two distinct absorption phases can be observed for aggregate soaking (Figure 9).

A rapid mass increase is observed during the first minute. This is due to fast particle internal porosity filling by free water, mainly driven by xylem sap canal capillarity forces [2, 13]. Aggregates surface covering with water, which cannot be removed, is also responsible for a part of this rapid mass increase.

The second step is related to diffusion and water bonding through plant cell wall openings such as pits (diameter between 20-40 nanometers) [3]. As it is a diffusion process, it depends on the aggregate particle size distribution. After 30 minutes, around 300% percent mass increase compared to initial dry mass is measured.

This type of behavior can be well described with the following equation 4, proposed by Nozahic and Amziane [4]:

\[W = IRA + K_1 \times \log(t) \]

eq. 4

\(K_1 \) is a kind of diffusion rate in shiv cells. This factor is related to the second step of absorption/internal adsorption. It is also important to note the close relationship between the value of \(K_1 \) and the intrinsic porosity of the shiv.

IRA represents the characteristic factor of the external water adsorption on the surface of shiv. In this case, IRA could be related to the first minute measurement (Table 8). The Initial

\[W = IRA + K_1 \times \log(t) \]

eq. 4

\(K_1 \) is a kind of diffusion rate in shiv cells. This factor is related to the second step of absorption/internal adsorption. It is also important to note the close relationship between the value of \(K_1 \) and the intrinsic porosity of the shiv.

IRA represents the characteristic factor of the external water adsorption on the surface of shiv. In this case, IRA could be related to the first minute measurement (Table 8). The Initial
Rate of Absorption is well described in (IRA, EN 772-11) [5]. In the case of dispersed aggregates, the IRA measurement cannot be made and is replaced by step-by-step absorption tests during direct water immersion.

Figure 10. Logarithmic diagram of absorption

To compare the results, Table 8 presents the calculation of the parameters IRA and K_1 starting from the data of figure 10:

Table 8: Comparison of IRA and K_1

<table>
<thead>
<tr>
<th>Lab</th>
<th>IRA</th>
<th>K_1</th>
<th>R^2</th>
<th>W_{max} at 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>248.2</td>
<td>34.9</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>260.7</td>
<td>47.2</td>
<td>0.993</td>
<td>426.8±22.3</td>
</tr>
<tr>
<td>C</td>
<td>239.4</td>
<td>45.7</td>
<td>0.953</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>288.8</td>
<td>21.1</td>
<td>0.862</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>333.4</td>
<td>49.3</td>
<td>0.93</td>
<td>482.8±36.7</td>
</tr>
<tr>
<td>F</td>
<td>277.1</td>
<td>47.2</td>
<td>0.998</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>159.9</td>
<td>50.5</td>
<td>0.992</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td>258.2±106.7</td>
<td>42.3±21.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial average*</td>
<td>262.8±40.6</td>
<td>48.0±3.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (A/B/C/D/F) or (B/C/E/F/G)
The comparison of the results obtained by the different laboratories revealed that IRA values are strongly influenced by the variations in experimental procedures. As IRA value represents the external water adsorption at the surface of the particles, the procedure of drying applied before weighting can significantly modify this parameter. The quantity of water adsorbed at the surface of the particles or located between the particles is, for example, largely reduced when absorbent paper is used as showed by results obtained in lab G.

It can be seen in Figure 10 that the intra-particular absorption of water follows a logarithmic law as for diffusive phenomena within porous materials. The results of Round Robin Test revealed that in spite of the variations in experimental procedures, the determination of K_1 parameter, representative of this intra-particular diffusion, is quite repeatable.

4.3 Concluding remarks

With respect to the external adsorption (IRA parameter), the data obtained by the labs E and G differ widely from the average while other labs results are very close. This could be explained by differences in drying procedure before particle weighing. The key method of reducing the discrepancy of the results would be to standardise the drying stage. We recommend using only one protocol developed from an analysis of the initial tests with the addition of a repeatable drying stage, using common and widely available equipment:

1. Dry shiv at 60ºC until the change in mass of the sample is less than 0.1% over 24 hours.

2. Weigh 50g of dry hemp shiv at 20ºC ($M_0\,(g)$) in a water permeable bag (plastic or metallic bag with a maximum hole size of 1 mm2).

3. Immerse the bag for 1 min, 15 min, 4h, and 48h into the water.

4. After the specified time, drain the bag using a salad spinner for 1 min.5. Weigh the bag $M(t)\,(g)$ and calculate the water absorption ratio $W(t)\, (%)$ at 5 min, 6h, 24h and 48h (eq. 6):

$$W(t) = \frac{M(t) - M_0}{M_0} \times 100$$ \hspace{1cm} \text{eq. 6}

6. Repeat the test 3 times (with 3 different samples of shiv)

SUMMARY OF FINDINGS

To obtain the principal physical characterisation of plant aggregate as hemp shiv, the literature shows that several protocols are in use. Some of them are directly derived from the methodology to describe the properties of mineral aggregates or other materials. Hemp shiv exhibits some very specific properties in terms of geometry, water absorption, bulk density etc. which are very different from normal mineral aggregates. As a result, the objective of the inter-laboratory tests presented in this paper is to analyse the data obtained from several protocols in order to propose recommendations which are able to reduce the discrepancies resulting from the limitations and lack of adaptation of the protocols to the specificity of hemp shiv.
At this stage two characteristics are investigated. The discussion of the results allows the proposal of the following principal recommendations:

Dry the material at 60°C until constant mass is reached (variation less than 0.1% between two readings over a 24 hour period). Sampling quality is a key point to consider before any determination of properties.

1. **Initial Water Content:** For each sample, a minimal mass of 50 g of hemp shiv is advised. The drying method in an oven between 50°C and 60°C is recommended for a fast equilibrium. Dry state will be considered to be reached when the change in mass of the sample is less than 0.1% over 24 hours.

2. **Water Absorption:** 50g of hemp shiv are necessary. After immersion in a water bath, the drying procedure before particles weighing was identified as a critical stage. In order to facilitate and standardise this step, we recommend the use of a salad spinner to drain excess water from the bag over a one minute period.

References

ROUND ROBIN TEST FOR HEMP SHIV CHARACTERISATION:

PART II : BULK DENSITY AND PARTICLE SIZE DISTRIBUTION

Authored by: Sofiane Amziane(1), Florence Collet(2), Mike Lawrence(3), Camille Magniont(4), Vincent Picandet(5)

1: Chair of RILEM TC-BBM 236, Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr
2: LGCGM, Université Rennes 1, Rennes, France, florence.collet@univ-rennes1.fr
3: BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK, m.lawrence@bath.ac.uk
4: Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), camille.magniont@insa-toulouse.fr
5: Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, vincent.picandet@univ-ubs.fr

With the contribution of:
6: Laurent Arnaud, Art et Métiers, ENSAM Cluny, laurent.arnaud@ensam.eu
7: Thibault Collinart and Pierre Tronet, Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, thibault.collinart@univ-ubs.fr, pierre.tronet@univ-ubs.fr
8: Vincent Nozahic, Institut Pascal, Clermont Université, France, vincent.nozahic@hotmail.fr
9: Etienne Gourlay, CETE de l’Est – Laboratoire Régional de Strasbourg, etienne.gourlay@developpement-durable.gouv.fr
10: Sandrine Marceau, Paris-Est, IFSTTAR, MAST, Marne-La-Vallée, France, sandrine.marceau@ifsttar.fr
11: Gilles Escadillas, Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Gilles.Escadillas@u
12: Laetitia Bessette, Centre Technique Louis VICAT, L’Isle d’Abeau, France, L’Isle d’Abeau, l.bessette@vicat.fr
13: Paulien Debruijn, Lund University, Faculty of Engineering (LTH), Dept of Building Materials, Llund,Sweden, pdbdebruijn@gmail.com
14: Ulrike Peter, Lhoist, Lhoist Recherche et Développement S.A., Belgium, ulrike.peter@lhoist.com
15: Sara Pavia, Dept of Civil Engineering, Trinity College Dublin, Ireland, PAVIAS@tcd.ie

Abstract
The paper presents the experience of a working group within the RILEM Technical Committee 236-BBM ‘Bio-aggregate-based building Materials’. The work of the Technical Committee (TC) will be to study construction materials made from plant particles. These materials
are obtained from the processing of hemp, flax, miscanthus, pine, maize, sunflower, bamboo and others. The second part of the first round robin test of the TC-BBM was carried out to compare the protocols in use by the different laboratories (labs) to bulk density and particle grading. The aim is to define a characterisation protocol derived from those used by the different labs. This first round robin test was carried out on one variety of hemp shiv. Nine laboratories from European universities and research centers were involved (Table 1). The test results of 7 laboratories constitute a set of statistically representative data in order to propose recommendations to characterise hemp shiv after analysing the different methodologies in use in these labs. This paper presents the bulk density and particle size distribution (PSD) measurements.

Table 1. Participating Labs

<table>
<thead>
<tr>
<th>Letter</th>
<th>City</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bath (UK)</td>
<td>BRE Centre for Innovative Construction Materials / University of Bath</td>
</tr>
<tr>
<td>B</td>
<td>Clermont Ferrand (France)</td>
<td>Institut Pascal</td>
</tr>
<tr>
<td>C</td>
<td>Lorient (France)</td>
<td>LIMatB / Université de Bretagne Sud</td>
</tr>
<tr>
<td>D</td>
<td>Lyon (France)</td>
<td>DGCB / ENTPE</td>
</tr>
<tr>
<td>E</td>
<td>Paris (France)</td>
<td>IFSTTAR</td>
</tr>
<tr>
<td>F</td>
<td>Rennes (France)</td>
<td>LGCCM/Rennes 1</td>
</tr>
<tr>
<td>G</td>
<td>Toulouse (France)</td>
<td>LMDC / Université de Toulouse / UPS/INSA</td>
</tr>
<tr>
<td>I</td>
<td>Combloux (Belgium)</td>
<td>Combloux-Agro ressource – Université de Liège</td>
</tr>
</tbody>
</table>

5 INTRODUCTION

This study focus on bio-based aggregate coming from the stem of plants cultivated either for their fibers (hemp, flax, etc.) or for their seeds (oleaginous flax, sunflower, etc.). Owing to the structure of the stem of the plant they are made from, such aggregates are generally malleable, elongated and highly porous with a low apparent density. They are very different from the mineral aggregates typically used in concretes, for which there are standardised tools and techniques for characterisation. Amongst these, hemp shiv (the woody core of the stem of the hemp plant) is probably the most widely used in alternative or eco-friendly building materials in Europe and is also representative of most of the aggregate coming from the stem of an annual crop. This is usually mixed with a lime-based binder and the resultant ‘bio-concrete’ is known as ‘hemp-lime’.

This kind of aggregate is a co-product of hemp industry that is renewable and produced in an annual cycle while the price of mineral aggregates is steadily increasing as resources become less readily available. The characterisation of these aggregates, however, which is crucial to a proper understanding of the quality of the materials in which they are incorporated, requires adaptations to be made to the techniques usually employed for mineral aggregates, or the devising of new characterisation procedures.
The first round robin test of the Rilem TC-BBM was carried out to compare the protocols in use by the different labs. The aim was to define a test method to measure bulk density, particle size distribution, water absorption and thermal conductivity of bio aggregates. This first round robin test was carried out with one variety of hemp shiv (the woody core of the plant stalk chopped into lengths of a few centimeters) coming from the same production of a processing factory located in France. The physical properties and more description of this hemp shiv is given in the part I of the RTT [1]. Seven labs conducted the measurements (Table 2). This part presents the bulk density and particle size distribution (PSD) measurements and analysis.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participating Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Density</td>
<td>B, C, D, E, F</td>
</tr>
<tr>
<td>Particle Size Distribution</td>
<td>A, B, C, D, E, G, I</td>
</tr>
</tbody>
</table>

6 MATERIAL

One variety of hemp shiv was selected for this inter-laboratory test. It comes from the same processing factory where the bast fibers are stripped off (de-cortification), leaving the shiv behind. This shiv was provided by LCDA producer under the commercial name “KANABAT” (Tables 3 and 4). This shiv is in line with the French national recommendation provided by “Construire en Chanvre” association (Table 5) [2].

Table 3. Physical properties of shiv as supplied by the producer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>100 to 110 kg/m³ (depending on ambient relative humidity) Loosely packed, not compressed</td>
</tr>
<tr>
<td>Water absorption</td>
<td>198% (NFV 19 002)</td>
</tr>
<tr>
<td>Water absorption of mineral elements</td>
<td>24 meq per 100g of raw material</td>
</tr>
<tr>
<td>Calorific value</td>
<td>3804 cal/g (NF M 07-030 12/9G)</td>
</tr>
<tr>
<td>Thermal Conductivity (10°C in a dry state)</td>
<td>0.0486 W/m.K (NF EN12667)</td>
</tr>
</tbody>
</table>

Table 4. Chemical composition of the shiv as supplied by the producer*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>9 to 13 %</td>
</tr>
<tr>
<td>Dry material</td>
<td>85 to 90% of which</td>
</tr>
<tr>
<td>Total organic material</td>
<td>97.5 % on a dry basis of which :</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Recommendation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Apparent density of particles in kg/m³</td>
<td>Quoted apparent density +/- 15 %</td>
</tr>
<tr>
<td>Maximal length (L_{max} in %)</td>
<td>Quoted L_{max} +/- 10 %</td>
</tr>
<tr>
<td>Initial moisture content</td>
<td>< 19 %</td>
</tr>
<tr>
<td>Dust content</td>
<td>< 2% passing a 0.25 mm sieve</td>
</tr>
<tr>
<td>Colour</td>
<td>% of particles not conforming < 5%</td>
</tr>
</tbody>
</table>

7 BULK DENSITY

The bulk density of hemp shiv is linked to the porosity of the particles and to the inter-particular porosity. In this study, bulk density of hemp shiv is measured in a cylindrical mould with a loose packing and without compaction. Four labs measured it with one mould and at one state (dry state or ambient relative humidity). The other lab studied the effect of the size of the mould on bulk density measurement at 23°C 50%RH and then the effect of relative humidity on the bulk density of hemp shiv (see Table 6).

7.1 Methods

Table 6. Description of the methodology to measure the bulk density

<table>
<thead>
<tr>
<th>Labs</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bulk density is measured on hemp shiv at 23°C and ambient relative humidity. The water content of hemp shiv is taken to be 12%. Measurements are made in a 10-litre container and are repeated nine times.</td>
</tr>
<tr>
<td>C</td>
<td>Bulk density is measured in a dry state. Hemp shiv are dried in oven at 60°C for 72 hours. The measurements are made in a two litre cylinder and are repeated 10 times.</td>
</tr>
<tr>
<td>D</td>
<td>Bulk density is measured in a dry state. Hemp shiv are dried in oven at 80°C for 72 hours.</td>
</tr>
</tbody>
</table>
Bulk density is measured in a dry state. Hemp shiv are dried in oven at 40°C for 48 hours. The measurements are made in a five litre cylinder and are repeated five times.

Bulk density is measured after stabilisation at 23°C, 50%RH using 8 sizes of mould (Table 7) see Figure 1. Hemp shiv are unpacked and placed in a large pan to eliminate initial compaction. Moulds are filled with hemp shiv that are poured so as to cover the entire surface of the mould. The upper level is levelled. The effect of relative humidity on bulk density was then studied using hemp shiv stabilised in a dry state, at 23°C and 33%RH, and at 23°C and 80%RH. Each measurement was repeated five times.

Table 7. Size of the moulds used for the measurement of bulk density of hemp shiv

<table>
<thead>
<tr>
<th>Mould</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5*</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (cm)</td>
<td>15.0</td>
<td>12.1</td>
<td>14.0</td>
<td>11.9</td>
<td>7.0</td>
<td>5.6</td>
<td>5.6</td>
<td>17.4</td>
</tr>
<tr>
<td>H (cm)</td>
<td>31.7</td>
<td>19.5</td>
<td>9.4</td>
<td>8.5</td>
<td>8.5</td>
<td>9.7</td>
<td>20.0</td>
<td>11.6</td>
</tr>
</tbody>
</table>

*Gentle slanting of lateral side

7.2 Results

Figure 2 shows a synthesis of the results obtained by all the participating labs. For the lab F, only the values obtained at dry point and at 50%RH (at 23°C) are given here.

The average value from all these data is 116 kg/m³ with a standard deviation of 12.2 kg/m³. One lab (E) gives a value much higher than the others labs. This may be due to the fact that hemp shiv was not sufficiently loosened to remove the initial packing compaction.

Ignoring lab E, the average value of bulk density is 112 kg/m³ with a standard deviation of 6.7 kg/m³. It can be seen that the results from the different participating labs are closely aligned.
Figure 3 shows the bulk densities measured against the mould type used. The average value of bulk density obtained with all the moulds is 112.7 kg/m3 and the standard deviation is 4.6 kg/m3.

Two moulds show a lower value of bulk density. For mould number 5, this is unlikely to be due to its size as mould number 6, with nearly the same size, gives similar results as the other moulds. This deviation may be due to a gentle slanting of its lateral side. For mould number 8, this may be due its large diameter. In this case, the top is more difficult to level than the tops of the other moulds.

The average value of bulk density obtained (excluding mould 5 and mould 8) is 114.9 kg/m3 and the standard deviation is 2.2 kg/m3. Thus, all moulds in the range of 5 to 15 centimeters in diameter and 8 to 32 centimeters in height give representative values of bulk density. For a larger value in diameter, the top of the sample is difficult to level.
Figure 4 shows the variation of bulk density of hemp shiv versus ambient relative humidity.

The average value of bulk density is 111 kg/m\(^3\) and the standard deviation is 4.8 kg/m\(^3\). Thus, bulk density does not vary much within the range of relative humidity.

This curve shows a light increase from dry point to 50% RH and then a decrease, probably due to expansion of hemp shiv.

![Graph showing variation of bulk density versus ambient relative humidity](image)

Figure 4. Variation of bulk density versus ambient relative humidity - Lab F (mould 3)

7.3 Concluding remarks on bulk density

All the results are close to each other, the average value of bulk density is 112 kg/m\(^3\) with a standard deviation of 6.7 kg/m\(^3\). One lab shows more deviation, it is presumed to be due to insufficient loosening of the packed material. To reduce the discrepancy of the results, we recommend the adoption of the following protocol:

1. Dry the material at 60°C until constant mass is reached (variation less than 0.1% between two readings at 24 hours).

2. Put hemp shiv in a sealed bag or a sealed bucket until equilibrated with room temperature.

3. Put the dried material in a glass cylinder 10 cm to 20 cm in diameter and at least twice the diameter in height. The quantity of the material has to be adjusted to be half the volume of the container.

4. Upend the glass cylinder ten times

5. Shake to obtain a horizontal surface

6. Use a cardboard disc and mark the level
7. Measure the volume with water

8. Calculate the bulk density

9. Repeat the test 3 times (with 3 different samples of shiv)
8 PARTICLE SIZE DISTRIBUTION

Particle Size Distribution (PSD), is commonly used to characterise mineral aggregates. It is a key factor in many casting process since it controls the flowability of the fresh mix and the final packing of the aggregates inside composite materials or concrete.

PSD was initially developed using sieving methods, when dealing with rigid aggregates with a spherical shape, i.e. high sphericity ratio and/or low elongation ratio. However, in the case of aggregates coming from plant stems, pore structures and global shape is strongly oriented and varying amounts of cortical fibers remain attached to the particles depending on the decortication process. Moreover, the low density of particles makes traditional dry sieving method using normalised aperture not relevant [3]. As an alternative, digital image processing can be used to assess shape parameters. This technique is used in mining industries to instantaneously check production on site, and it is now being developed in agricultural and biological engineering to control efficiency of plant milling operations, for instance in biomass-to-fuel process [4] [5], or to control pelletising of bulky biomass residues [6] and the associated dust management [7].

Starting from the traditional standardised sieving method, and using digital image processing method in addition, this study briefly describes the hemp shiv tested, and presents the applied methods of sieving and image analysis. The results have led to some PSD measurement recommendations and to focus on some relevant parameters.

8.1 Sieving method

Mechanical sieving is processed with normative square opening sieves. Metallic mesh, woven wire sieves, conforming to ISO 3310-1 in most of laboratories, or perforated plate square hole sieves conforming to ISO 3310-2 if the opening size is greater than 4 mm in some other laboratories.

The mechanical sieve shakers used induce horizontal circular motion overlying a vertical motion which is created by a tapping impulse. Due to the low density and elongated shape of the particles, the vibration duration should be longer than for mineral aggregates to obtain repeatable results. Drying of samples before testing may prevent the finest particles from sticking to the coarser ones.

The protocols used by each laboratory are summarised in Table 8.
Table 8: Experimental protocol used by different Laboratories

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample mass (g)</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Sieve diameter (mm)</td>
<td>203</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>50</td>
</tr>
<tr>
<td>Vibration time (mins) M: Manual sieving</td>
<td>10</td>
<td>15</td>
<td>40</td>
<td>5</td>
<td>20</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Repetitions</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>3*</td>
</tr>
<tr>
<td>Drying temperature Const: until constant weight</td>
<td>105°C Const</td>
<td>None</td>
<td>60°C Const</td>
<td>None</td>
<td>40°C</td>
<td>2 days</td>
<td>None</td>
</tr>
</tbody>
</table>

*Reported result

Results are plotted in Figure 5. Since 50% approximately of particles are retained on the 2 mm sieves, the mass fraction passing this sieve is relevant. Laboratories do not use the same stack of sieves but 6 out of 7 use the sieve with 2 mm apertures. Extrapolated values have been deduced using a linear regression in logarithmic scale of size where intermediate values are missing and results are reported in Table 9.

Table 9: Mass fraction (%) passing through sieves with 0.5, 1, 2, 4 and 5 mm nominal opening size

<table>
<thead>
<tr>
<th>Nominal opening size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>I</th>
<th>Mean value</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>2.0</td>
<td>1.2</td>
<td>1.1*</td>
<td>2.1</td>
<td>0.9</td>
<td>1.5*</td>
<td>0.8</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>1 mm</td>
<td>8.3</td>
<td>10.3</td>
<td>8.8*</td>
<td>14.4</td>
<td>12.3</td>
<td>12.5*</td>
<td>11.9*</td>
<td>11.2</td>
<td>2.2</td>
</tr>
<tr>
<td>2 mm</td>
<td>42.8</td>
<td>35.5</td>
<td>60.3</td>
<td>58.6</td>
<td>60.6</td>
<td>51.7</td>
<td>45.0</td>
<td>50.6</td>
<td>9.8</td>
</tr>
<tr>
<td>4 mm</td>
<td>93.0</td>
<td>51.4*</td>
<td>96.2</td>
<td>94.1*</td>
<td>96.5</td>
<td>95.2</td>
<td>95.8*</td>
<td>88.9</td>
<td>16.6</td>
</tr>
<tr>
<td>5 mm</td>
<td>95.3*</td>
<td>99.3</td>
<td>99.4</td>
<td>98.3</td>
<td>99.5</td>
<td>98.0</td>
<td>99.3</td>
<td>98.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

*Extrapolated value
Some laboratories show that the operating time (on the mechanical shaker) tends to increase the percentage of material passing, especially on the first sieves. Percentages of material passing tend also to decrease when the mass of tested sample increases. Below 100 g with 315 mm diameter sieves and after 30 minutes shaking, no significant trends have been observed.

An extended shaking time may modify the size of granular due to the erosion of shiv on the metallic mesh and/or due to the separation of the remaining fibres attached to the shiv.

8.1.1 Fibre content

Inspection of the fractions shows that most of fibres are attached to the shiv particles, especially the coarser ones. Sometimes, material retained in the sieves included a significant quantity of fibre mixed with shiv which formed a loose roll or fiber balls. The unattached fibres can be then be manually separated with greater efficiency. It should be noted that various lengths of fibre can be removed. Mass fractions of fibre are reported in Table 10.

<table>
<thead>
<tr>
<th>Lab B</th>
<th>Lab C</th>
<th>Lab G</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25%</td>
<td>4.5%</td>
<td>5.9%</td>
</tr>
<tr>
<td>± 0.3%</td>
<td>± 0.5%</td>
<td>± 0.52%</td>
</tr>
</tbody>
</table>

8.1.2 Dust content

Dust is defined as particles with length or width lower than a given size. This size has not been clearly set. If we consider particles passing the 0.5 mm nominal aperture sieve to be dust, the mass content of dust is reported in Table 9. However, dry sieving of finest particles can lead to scattered results. Moreover, finest fibres are able to pass the 0.5 mm sieve while...
dust should mainly consist in round particles, or mineral particles, that could remain stuck to
the shiv particles.

8.2 Image processing

8.2.1 Picture acquisition

Particles are spread in a manner that they do not touch or overlap one another, in a single
layer arrangement [7]. Particles have a light color. In order to obtain the maximum contrast, a black background is
usually selected. Pictures are taken by the means of camera or flatbed scanner. In both cases, a picture calibration is required. Scanning method allows pre-selected resolution (DPI) leading to homogeneous and accurate calibration. Measurement and accuracy improves with higher resolution, but restrictions come from handling the file size of recorded images. 8-bit gray scale images are usually needed to be processed with image analysis software (i.e: pixel intensity levels ranging from 0 to 255). Other format files of acquired images have to be converted.

8.2.2 Image analysis

Among the image analysis software used, two are freely available: ImageJ (V. 1.45) developed at the National Institute of Health, USA, and ImageTool (V. 3.0) developed at the University of Texas Health Science Center in San Antonio, USA. The Table 11 presents the protocols of Laboratories.

Image processing algorithms require a binary image that can be produced by converting the image into binary image by proper thresholding. Since hemp shiv could include dust, i.e, particles lower than 0.5 mm, and attached fibres to shiv particles, thresholding operations may be critical.

Examination of ground biomass material reveals that they are of irregular shape with rough edges due to the shredding action of the de-fibering process. As observed in many studies with various materials [3], the shape of particles tends to be convex polygonal but some particles tend to deviate and are non convex polygonal.

Morphological operations can be applied such as “opening” routines in order to remove the finest fibres attached to particles and avoid bias in particle measurements, but results do not show significant effect on the global size distributions.

8.2.3 Measurements

For each detected particle the following parameters are stored in data files: projected area and projected perimeter. The mean equivalent diameter (i.e. 4×Area/Perimeter) leads to an average size assuming that particles have spherical shape. However, length and width of particles can be assessed using image analysis.

The direct measurement of particle length is usually considered as the major axis length (i.e. the length of the longest line that can be drawn between any two points along the object boundary or the diameter of the circumscribed circle) also known as maximum Feret’s diameter.

Many methods exist to evaluate the particle width: it can be considered as the length of the longest line that can be drawn through the object perpendicular to the major axis (e.g: ImageTool method) or it can also be considered as the minimum caliper, also called minimum Feret’s diameter (e.g. ImageJ method).
Other methods consisting of fitting basic shapes onto identified particles exist [8] and could be used to estimate length and/or width. Ellipse is a common shape suitable to fit the shiv particles and available in many software. The ellipses have same area and centroid (i.e. center of mass) as the original objects. In such case length and width can also be done along the major and minor axis from the fitted ellipse.

Table 11: Image processing and analysis protocols

<table>
<thead>
<tr>
<th>Lab</th>
<th>Mass</th>
<th>Min. Area</th>
<th>Analysed Particles</th>
<th>Image processing/Scale Picture physical size</th>
<th>Software used Analysis method</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1 g among particles retained on 0.5 mm sieve</td>
<td>1 mm²</td>
<td>830</td>
<td>Camera Pic.: 420 x 297 mm</td>
<td>ImageTool: Féret*</td>
</tr>
<tr>
<td>C</td>
<td>4 g</td>
<td>0.08 mm²</td>
<td>2600</td>
<td>Scan 600 DPI 23.6 pixels/mm Pic.: 9 (240 x 297 mm²)</td>
<td>ImageJ: Ellipse + Féret ImageTool: Féret*</td>
</tr>
<tr>
<td>D</td>
<td>5 g</td>
<td>0.44 mm²</td>
<td>3100</td>
<td>Camera Pic.: 400 x 300 mm²</td>
<td>ImageJ: Ellipse</td>
</tr>
<tr>
<td>E</td>
<td>*</td>
<td>0.5 mm²</td>
<td>3200</td>
<td>Camera Pic.: 5 (400 x 300 mm²)</td>
<td>ImageJ: Ellipse + Féret</td>
</tr>
<tr>
<td>I</td>
<td>8 g</td>
<td>1 mm²</td>
<td>5350</td>
<td>Scan 300 DPI 11.8 pixels/mm</td>
<td>ImagePro: Féret</td>
</tr>
<tr>
<td>G</td>
<td>6 g</td>
<td>0.03 mm²</td>
<td>3700</td>
<td>Scan 600 DPI 23.6 pixels/mm</td>
<td>ImageTool: Féret*</td>
</tr>
</tbody>
</table>

8.2.4 Shape descriptors
Among various shape descriptors, the aspect ratio (i.e. length to width ratio) is relevant since it is an indicator of the anisotropic properties induced in case of particles arrangement with a preferential orientation.

8.2.5 Characterisation of size distributions
Many PSD could be done from image analysis data depending on the considered quantification of the material: number, projected area or volume of particles. It should be noted that in some studies distribution based on particle number (i.e. frequency) is only considered. But
this distribution is very sensitive to numerous finest particles and is not representative in case of hemp shiv. The minimum area of detected particles cannot be accurately set.

A grading curve from area-based results can also be done directly from recorded data. The weighted arithmetic mean of size \(x \) or expected value, \(E_{am} \), and its associated standard deviation \(Sd_{am} \) are basic parameters to compute. If the dimension \(x_i \) and area \(A_i \) of each particle \(i \) are known, \(E_{am} \) and \(Sd_{am} \) can be written as follow:

\[
E_{am}(x) = \frac{\sum A_i (x_i)}{\sum A_i}
\]

eq. 2

\[
Sd_{am} = \sqrt{\frac{\sum A_i (x_i - E_{am}(x))^2}{\sum A_i}}
\]

eq. 3

When incorporating logarithm of size, the weighted geometric mean \(X_{gm} \) and its associated standard deviation \(Sd_{gm} \), see eq.(3) and eq.(4), are useful parameters to compute since many standards use this parameter \[9][10\]. It is always lower than arithmetic mean, and it is less sensitive to coarsest particles. It could be considered more representative in case of PSD of ground biomass \[5][11][12\].

\[
X_{gm} = \exp\left(\frac{\sum A_i \ln(x_i)}{\sum A_i}\right)
\]

eq. 4

\[
Sd_{gm} = \exp\left(\sqrt{\frac{\sum A_i (\ln(x_i) - \ln(X_{gm}))^2}{\sum A_i}}\right)
\]

eq. 5

In the case of individual particle measurement, the considered size \(x \) is whether the width or length of particles, or the aspect ratio (i.e. length to width ratio) in table 11.

In case of sieving, the dimension of the normative aperture \(d_i \) and the mass \(M_i \) of the particles retained on sieve can be considered instead of \(x_i \) and \(A_i \) in eq.1, 2, 3 and 4.

In tables 12 to 14, representative cumulative dimensions such as \(D_k \), for \(k = 95, 75, 50, 25 \), and 5 corresponds to particle dimension in mm at respective k% cumulative undersize area.

Particle size distribution can be represented closely by mathematical expressions. Basic models, based on a continuous and semi infinite variable, use equations with two parameters, one relative to the mean size and the other one indicating the width of distribution. The log-normal distribution can be a powerful approximation to characterise size of particles generated in dry or wet milling process \[13\]. A random variable \(X \) is said to be log-normally distributed if \(\log(X) \) is normally distributed. The log-normal cumulative distribution function can be then written as follow:
Where \(X \) is the particle size, and \(P_{\text{Log.N}}(X \leq x) \) is the percentage based on the cumulative projected area of particles smaller than \(x \). The median size \(D_{50(\text{Log.N})} \) corresponds to \(e^\mu \). Due to the symmetrical curve produced in log-scale, the geometric mean size of the distribution is equivalent to the median diameter for log-normal graphs, i.e. equal to \(e^\mu \), and the associated geometric standard deviation is equal to \(e^\sigma \). The values of the weighted geometric mean size \(X_{gm} \) of the experimental data and their associated standard deviation \(S_{d gm} \) values could be then respectively compared to \(e^\mu \) and \(e^\sigma \) in order to consider the relevance of the log-normal fit.

8.2.6 Comparison of image analysis methods

In this section, the same set of binary images of hemp shiv, including 2600 particles with a projected area greater than 0.08 mm\(^2\), has been used in order to evaluate the influence of analysis parameters such as area threshold of particles, width and length determination methods.

8.2.6.1 Effect of particle area threshold

The minimum area of considered particles ranges from 0.03 to 1 mm\(^2\). This detection threshold can be set at various values according to the image resolution since smaller objects need to contain a minimum number of pixels to be representatively analysed. More than 40 pixels per particle should be recommended to obtain representative objects in binary images. Below this limit, the sizes and area of finest particles is more sensitive to thresholding operations due to the “halo effect” around the object boundary occurring in color or gray level images [7]. Shape indicators are also not relevant in such cases.

Results show that variation of the area threshold, between 0.08 and 0.9 mm\(^2\) (i.e: between 45 and 500 pixels) induces only small change in the cumulative distributions, especially for the lower sizes (width and length). Beyond 0.9 mm\(^2\), the fraction of ignored particles becomes not negligible, and the cumulative distributions deviate significantly.

8.2.6.2 Effect of Length and Width estimation method

The image analysis method used in this study has an appreciable influence on width distribution of particles while it has no significant influence on length distribution (see Figure 6).

Methods consisting of fitting an ellipse on identified particles lead to lower width than methods using direct measurement such as minimum Féret’s diameter or minor axis length named as Féret* in Figure 6 and Figure 7. The data computed using ImageTool globally produce size distributions bounded by the others. The distribution parameters of width and length are presented in Table 12.
Table 12: Effect of Length and Width estimation method on distribution parameters

<table>
<thead>
<tr>
<th>Width</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5</td>
<td>0.90 0.94 1.03</td>
</tr>
<tr>
<td>D25</td>
<td>1.47 1.54 1.65</td>
</tr>
<tr>
<td>D50</td>
<td>2.05 2.17 2.29</td>
</tr>
<tr>
<td>D75</td>
<td>2.87 3.03 3.21</td>
</tr>
<tr>
<td>D95</td>
<td>4.32 4.89 5.28</td>
</tr>
<tr>
<td>Xgm</td>
<td>2.00 2.16 2.31</td>
</tr>
<tr>
<td>Sdgm</td>
<td>1.64 1.70 1.67</td>
</tr>
<tr>
<td>ε</td>
<td>4.18 4.05 3.69</td>
</tr>
<tr>
<td>Sd(ε)</td>
<td>1.89 1.92 1.47</td>
</tr>
</tbody>
</table>

8.2.7 Comparison of collected results.

Cumulative distribution of width and length are plotted in Figure 7. When laboratories provide many distributions relative to different methods, the method consisting in fitting ellipse have been chosen to be reported. This method provides more robust measures since it produces an average size of the object. A smooth boundary is extrapolated in the case of particles with some outgrowth, and can be considered more representative of effective size of shiv particle, (i.e., core of particles with almost any soft attached fibers).

According to the image resolution and the thresholding operations, the amount of fibres around the shiv particles that is associated to the object changes. These fibres make the shape depart from the standard "rod" shape and could cause bias in size estimation, especially width. As Féret’s diameter takes into account these fibres linked to the shiv particle in the object siz-
ing and the width measurement may be less robust. The results reported are more scattered particularly in case of width repartition.

Generally, the cumulative distributions exhibit less scattering results around the median values, D_{50}, than for the tails of distributions (D_5 and D_{95}). Investigation of finest particles needs specific image processing. Discrepancy observed with coarser particles can be due to the sampling quality and the analysis method used.

Log-normal functions (see eq.5) provide a good fit for most of cumulative size distribution. The coefficients of determination, R^2, are reported in Table 13 and Table 14. The parameters μ and σ deduced from fitting are in accordance with the weighted geometric mean and the associated standard deviation.

The elongation (or aspect ratio) ε, reported in Table 14 is deduced from the weighted arithmetic mean of the length to width ratio of each analysed particle. The associated arithmetic standard deviation $S_d(\varepsilon)$ is also reported.

Since the width distribution depends on analysis method, the aspect ratio is greater when major and minor axis lengths are considered as length and width. In that case the elongation ratio is also called elliptical ratio.

It should be noted that, even if some coarser particles tend to be more elongated, in case of the studied hemp shiv, the mean elongation is almost constant whatever the class of area considered, and the analysis method used. Globally, the mean elongation ratio is around 4 with significant standard deviation about 2.

![Cumulative width and length distributions](Unedited version)

Figure 7: Cumulative width and length distributions

Less than one thousand particles are analysed in B. The reduced sample size is probably less representative and may explain the difference. In case of B, the sampling has also been
made from particles retained on the 0.5 mm sieve while the other samples come from the whole material, without previous sieving.

In G, all detected particles have been considered in image analysis. The area threshold is very low 0.03 mm2, and an overestimation of finest particles may occur.

In E, a calibration bias may explain the difference observed with particle length. But width distribution is close to the others.
Table 13: *Results of particle length distributions*

<table>
<thead>
<tr>
<th></th>
<th>B ellipse</th>
<th>C ellipse</th>
<th>D ellipse</th>
<th>E ellipse</th>
<th>G Féret *</th>
<th>I Féret</th>
<th>Average length (mm)</th>
<th>Standard deviation (mm)</th>
<th>Relative standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅</td>
<td>3.00</td>
<td>3.01</td>
<td>3.23</td>
<td>2.68</td>
<td>3.59</td>
<td>3.13</td>
<td>3.10</td>
<td>0.30</td>
<td>9.7%</td>
</tr>
<tr>
<td>D₂₅</td>
<td>4.97</td>
<td>5.48</td>
<td>5.73</td>
<td>4.77</td>
<td>6.02</td>
<td>5.30</td>
<td>5.38</td>
<td>0.47</td>
<td>8.7%</td>
</tr>
<tr>
<td>D₅₀</td>
<td>7.54</td>
<td>7.80</td>
<td>8.08</td>
<td>6.92</td>
<td>8.28</td>
<td>7.46</td>
<td>7.68</td>
<td>0.49</td>
<td>6.3%</td>
</tr>
<tr>
<td>D₇₅</td>
<td>11.77</td>
<td>11.12</td>
<td>11.19</td>
<td>9.92</td>
<td>11.37</td>
<td>10.48</td>
<td>10.97</td>
<td>0.66</td>
<td>6.0%</td>
</tr>
<tr>
<td>D₉₅</td>
<td>19.20</td>
<td>17.57</td>
<td>17.30</td>
<td>15.75</td>
<td>18.01</td>
<td>16.30</td>
<td>17.35</td>
<td>1.23</td>
<td>7.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>R²</th>
<th>µ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅</td>
<td>0.9989</td>
<td>0.9993</td>
<td>0.9995</td>
<td>0.9991</td>
<td>0.9995</td>
<td>0.9996</td>
<td>827</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>D₂₅</td>
<td>1.54</td>
<td>1.47</td>
<td>1.52</td>
<td>1.55</td>
<td>1.80</td>
<td>1.54</td>
<td>2.05</td>
<td>0.51</td>
<td>0.55</td>
</tr>
<tr>
<td>D₅₀</td>
<td>3.17</td>
<td>2.87</td>
<td>2.69</td>
<td>2.71</td>
<td>3.01</td>
<td>2.79</td>
<td>2.06</td>
<td>0.51</td>
<td>0.55</td>
</tr>
<tr>
<td>D₇₅</td>
<td>5.91</td>
<td>4.32</td>
<td>3.92</td>
<td>4.14</td>
<td>4.21</td>
<td>4.32</td>
<td>2.05</td>
<td>0.51</td>
<td>0.55</td>
</tr>
<tr>
<td>D₉₅</td>
<td>8.22</td>
<td>7.75</td>
<td>8.06</td>
<td>8.88</td>
<td>8.28</td>
<td>7.45</td>
<td>7.66</td>
<td>0.97</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Table 14: *Results of particle width distributions*

<table>
<thead>
<tr>
<th></th>
<th>B ellipse</th>
<th>C ellipse</th>
<th>D ellipse</th>
<th>E ellipse</th>
<th>G Féret *</th>
<th>I Féret</th>
<th>Average length (mm)</th>
<th>Standard deviation (mm)</th>
<th>Relative standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅</td>
<td>0.92</td>
<td>0.90</td>
<td>0.88</td>
<td>0.95</td>
<td>1.20</td>
<td>0.97</td>
<td>0.97</td>
<td>0.12</td>
<td>12.1%</td>
</tr>
<tr>
<td>D₂₅</td>
<td>1.54</td>
<td>1.47</td>
<td>1.52</td>
<td>1.55</td>
<td>1.80</td>
<td>1.54</td>
<td>1.57</td>
<td>0.12</td>
<td>7.5%</td>
</tr>
<tr>
<td>D₅₀</td>
<td>2.19</td>
<td>2.05</td>
<td>2.05</td>
<td>2.06</td>
<td>2.33</td>
<td>2.10</td>
<td>2.13</td>
<td>0.11</td>
<td>5.1%</td>
</tr>
<tr>
<td>D₇₅</td>
<td>3.17</td>
<td>2.87</td>
<td>2.69</td>
<td>2.71</td>
<td>3.01</td>
<td>2.79</td>
<td>2.87</td>
<td>0.19</td>
<td>6.5%</td>
</tr>
<tr>
<td>D₉₅</td>
<td>5.91</td>
<td>4.32</td>
<td>3.92</td>
<td>4.14</td>
<td>4.21</td>
<td>4.32</td>
<td>4.47</td>
<td>0.72</td>
<td>16.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>R²</th>
<th>µ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅</td>
<td>0.9985</td>
<td>0.9996</td>
<td>0.9978</td>
<td>0.9990</td>
<td>0.9997</td>
<td>0.9997</td>
<td>827</td>
<td>0.80</td>
<td>0.54</td>
</tr>
<tr>
<td>D₂₅</td>
<td>0.80</td>
<td>0.71</td>
<td>0.71</td>
<td>0.72</td>
<td>0.85</td>
<td>0.74</td>
<td>0.49</td>
<td>0.44</td>
<td>0.39</td>
</tr>
<tr>
<td>D₅₀</td>
<td>0.54</td>
<td>0.49</td>
<td>0.44</td>
<td>0.44</td>
<td>0.39</td>
<td>0.45</td>
<td>2.04</td>
<td>2.04</td>
<td>2.04</td>
</tr>
<tr>
<td>D₇₅</td>
<td>2.22</td>
<td>2.04</td>
<td>2.04</td>
<td>2.06</td>
<td>2.33</td>
<td>2.09</td>
<td>2.13</td>
<td>0.13</td>
<td>6.1%</td>
</tr>
<tr>
<td>D₉₅</td>
<td>2.24</td>
<td>2.00</td>
<td>1.98</td>
<td>2.04</td>
<td>2.31</td>
<td>2.08</td>
<td>2.11</td>
<td>0.13</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>ε</th>
<th>Sd(ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅</td>
<td>3.73</td>
<td>4.18</td>
<td>4.39</td>
<td>3.64</td>
<td>3.79</td>
<td>3.68</td>
<td>2.00</td>
<td>1.89</td>
</tr>
<tr>
<td>D₂₅</td>
<td>1.71</td>
<td>1.64</td>
<td>1.57</td>
<td>1.55</td>
<td>1.47</td>
<td>1.57</td>
<td>1.68</td>
<td>1.49</td>
</tr>
<tr>
<td>D₅₀</td>
<td>1.78</td>
<td>1.64</td>
<td>1.57</td>
<td>1.55</td>
<td>1.48</td>
<td>1.58</td>
<td>1.60</td>
<td>1.49</td>
</tr>
<tr>
<td>D₇₅</td>
<td>1.78</td>
<td>1.64</td>
<td>1.57</td>
<td>1.55</td>
<td>1.48</td>
<td>1.58</td>
<td>1.60</td>
<td>1.49</td>
</tr>
<tr>
<td>D₉₅</td>
<td>1.78</td>
<td>1.64</td>
<td>1.57</td>
<td>1.55</td>
<td>1.48</td>
<td>1.58</td>
<td>1.60</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Unedited version
8.3 Comparison between sieving and image analysis results

This study focuses on comparisons of the data from several laboratories. In order to compare measurements with usual sieving methods, results from image analysis have to be based on mass fractions. This issue needs more measurements or hypothesis on density and shape of particles in different size classes that have not been considered here.

In this study, the sieving data, using a mass based distribution, relate closely to the width based distribution calculated using an area based distribution (see Figure 8). In theory, these two distribution types should not be directly comparable. However, this assumes that the applied sieving process separates particles mainly based on their width. Indeed, this is what is found when examining the material retained on the sieves, where cross sectional dimensions of particles are very homogeneous and close to the mesh size.

![Figure 8: Cumulative width distributions obtained by sieving and image analysis](image)

Comparison of Table 9 and Table 14 shows that image analysis provides results less spread than sieving does with retained fraction on sieves with 2 mm nominal opening size where approximately 50% of the mass fraction is supposed to be retained. Nevertheless sieving methods seems to provide better results than image analysis does in the tails of distributions, especially with finest particles.
Table 15: *Area fraction (%) of particles with width lower than 0.5, 1, 2, 4 and 5 mm.*

<table>
<thead>
<tr>
<th>Width size</th>
<th>B Ellipse</th>
<th>C Ellipse</th>
<th>D ellipse</th>
<th>E Ellipse</th>
<th>FÉRET *</th>
<th>I FÉRET</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1 mm</td>
<td>7.0</td>
<td>7.5</td>
<td>7.0</td>
<td>5.9</td>
<td>1.6</td>
<td>5.6</td>
<td>5.8</td>
<td>2.2</td>
</tr>
<tr>
<td>2 mm</td>
<td>43.7</td>
<td>48.0</td>
<td>47.1</td>
<td>47.1</td>
<td>33.8</td>
<td>45.9</td>
<td>44.3</td>
<td>5.3</td>
</tr>
<tr>
<td>4 mm</td>
<td>82.3</td>
<td>92.1</td>
<td>95.7</td>
<td>93.7</td>
<td>91.7</td>
<td>92.9</td>
<td>91.4</td>
<td>4.7</td>
</tr>
<tr>
<td>5 mm</td>
<td>93.1</td>
<td>99.1</td>
<td>99.6</td>
<td>98.2</td>
<td>98.4</td>
<td>97.2</td>
<td>97.6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

8.4 Concluding remarks on Particle Size Distribution

- Results are globally consistent, especially for length distributions obtained using image processing.
- Mechanical sieving leads to width separation of particles. Both methods, sieving and image analysis, could be complimentarily used to study width distribution. Sieving method remains more appropriate to study the finest particle contents such as dust.
- Most of the fibres could be removed by sieving methods on the first screens when sieving method is carried out. Hemp shiv with high cortical fibre content is more difficult to characterise with both methods.
- Results show uni-modal distributions of both particle width and length of the tested hemp shiv. The log-normal distribution models provide adequate and robust fits. Geometric standard deviations, median and mean lengths match well those computed from the raw data. The size distribution can be then closely described using only the two parameters: μ and σ.
- The image analysis is reliable to characterise shiv particles but the selected threshold size of detection, and the analysis methods have to be specified. It assesses many particle shape factors that are needed to study anisotropic properties of the composite materials. Some particles have a shape that deviates from “rod” shape due to the shredding action of hemp straw and remaining attached fibres, but ellipse fitting allows the determination of an average shape that seems to be more representative and robust.
- Sampling quality is a key point to consider with digital image processing, since this method can not be commonly applied to samples exceeding few grams.
SUMMARY OF FINDINGS

To obtain the principal physical characterisation of plant aggregate as hemp shiv, the literature shows that several protocols are in use. Some of them are directly derived from the methodology to describe the properties of mineral aggregates or other materials. Hemp shiv exhibits some very specific properties in terms of geometry, water absorption, bulk density etc. which are very different from normal mineral aggregates. As a result, the objective of the inter-laboratory tests presented in this paper is to analyse the data obtained from several protocols in order to propose recommendations which are able to reduce the discrepancies resulting from the limitations and lack of adaptation of the protocols to the specificity of hemp shiv.

At this stage five characteristics are investigated. The discussion of the results allows the proposal of the following principal recommendations:

1. Dry the material at 60°C until constant mass is reached (variation less than 0.1% between two readings over a 24 hour period). Sampling quality is a key point to consider before any determination od properties.

2. Bulk density: The container size has to be adapted to the maximal length of the particle. In addition, before the test insufficient loosening of the packed material induces an error in the determination of the bulk density. The quantity of the material has to be adjusted to be half the volume of the container.

3. Particle Size Distribution: 100 gr for sieving method and 3 to 6 gr for image analysis method are necessary with hemp shiv. Representative analyses require more than 3000 identified particles represented by more than 40 pixels. As a consequence, with a given resolution (i.e. pixel size) the sample mass has to adjusted according to the mean size of the particles. Both methods, sieving and image analysis, could be complimentary used to study width distribution. Sieving method remains more appropriate to study the finest particle contents such as dust. The image analysis is reliable to characterise shiv particles but the selected threshold size of detection, and the analysis methods have to be specified. Sampling quality is a key point to consider with digital image processing, since this method can not be commonly applied to samples exceeding few grams.

ACKNOWLEDGEMENTS

References

ROUND ROBIN TEST FOR HEMP SHIV CHARACTERISATION:

PART 3 : THERMAL CONDUCTIVITY

Authored by: Sofiane Amziane(1), Florence Collet(2), Mike Lawrence(3), Camille Magniont(4), Vincent Picandet(5)

1: Chair of RILEM TC-BBM 236, Institut Pascal, Clermont Université, France, sofiane.amziane@univ-bpclermont.fr
2: LGCGM, Université Rennes 1, Rennes, France, florence.collet@univ-rennes1.fr
3: BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK, m.lawrence@bath.ac.uk,
4: Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), camille.magniont@insa-toulouse.fr
5: Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, vincent.picandet@univ-ubs.fr

With the contribution of :

6: Laurent Arnaud, Art et Métiers, ENSAM Cluny, laurent.arnaud@ensam.eu
7: Thibaut Collinart and Pierre Tronet, Université de Bretagne Sud, EA 4250, LIMatB, F-56100 Lorient, France, thibaut.collinart@univ-ubs.fr, pierre.tronet@univ-ubs.fr,
7: Vincent Nozahic, Institut Pascal, Clermont Université, France, vincent.nozahic@hotmail.fr
8: Etienne Gourlay, CETE de l'Est - Laboratoire Régional de Strasbourg, etienne.gourlay@developpement-durable.gouv.fr
9: Sandrine Marceau, Paris-Est, IFSTTAR, MAST, Marne-La-Vallée, France, sandrine.marceau@ifsttar.fr
10: Gilles Escadillas, Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Gilles.Escadillas@u
11: S. Dubois, Université de Liège (Ulg), Gembloux Agro-Bio Tech, Belgique, s.dubois@student.ulg.ac.be
12: Laetitia Bessette, Centre Technique Louis VICAT, L'Isle d'Abeau, France, L.Isle d'Abeau, l.bessette@vicat.fr
13: Paulien Debruijn, Lund University, Faculty of Engineering (LTH), Dept of Building Materials, Lund, Sweden, pdebruijn@gmail.com
14: Ulrike Peter, Lhoist, Lhoist Recherche et Développement S.A., Belgium, ulrike.peter@lhoist.com
15: Sara Pavia, Dept of Civil Engineering, Trinity College Dublin, Ireland, PAVIAS@tcd.ie
Abstract

The paper presents the experience of a working group within the RILEM Technical Committee 236-BBM ‘Bio-aggregate-based building Materials’. The work of the Technical Committee (TC) will be to study construction materials made from plant particles. These materials are obtained from the processing of hemp, flax, miscanthus, pine, maize, sunflower, bamboo and others. The first round robin test of the TC-BBM was carried out to compare the protocols in use by the different laboratories (labs) to measure initial water content, bulk density, water absorption, particle grading and thermal conductivity. The aim is to define a characterisation protocol derived from those used by the different labs. This first round robin test was carried out on one variety of hemp shiv. Nine laboratories from European universities and research centers were involved (Table 1). The test results of 7 laboratories constitute a set of statistically representative data in order to propose recommendations to characterise hemp shiv after analysing the different methodologies in use in these labs. This paper presents the results on thermal conductivity.

Table 1. Participating Labs

<table>
<thead>
<tr>
<th>Letter</th>
<th>City</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bath (UK)</td>
<td>BRE Centre for Innovative Construction Materials / University of Bath</td>
</tr>
<tr>
<td>B</td>
<td>Clermont Ferrand (France)</td>
<td>Institut Pascal</td>
</tr>
<tr>
<td>C</td>
<td>Lorient (France)</td>
<td>LIMatB / Université de Bretagne Sud</td>
</tr>
<tr>
<td>D</td>
<td>Lyon (France)</td>
<td>DGCB / ENPE</td>
</tr>
<tr>
<td>E</td>
<td>Paris (France)</td>
<td>IFSTTAR</td>
</tr>
<tr>
<td>F</td>
<td>Rennes (France)</td>
<td>LGCGM/Rennes 1</td>
</tr>
<tr>
<td>G</td>
<td>Toulouse (France)</td>
<td>LMDC / Université de Toulouse / UPS/INSA</td>
</tr>
<tr>
<td>I</td>
<td>Combloux (Belgium)</td>
<td>Combloux-Agro ressource – Université de Liège</td>
</tr>
</tbody>
</table>

9 INTRODUCTION

This study focus on bio-based aggregate coming from the stem of plants cultivated either for their fibers (hemp, flax, etc.) or for their seeds (oleaginous flax, sunflower, etc.). Owing to the structure of the stem of the plant they are made from, such aggregates are generally malleable, elongated and highly porous with a low apparent density. They are very different from the mineral aggregates typically used in concretes, for which there are standardised tools and techniques for characterisation. Amongst these, hemp shiv (the woody core of the stem of the hemp plant) is probably the most widely used in alternative or eco-friendly building materials in Europe and is also representative of most of the aggregate coming from the stem of an annual crop. This is usually mixed with a lime-based binder and the resultant ‘bio-concrete’ is known as ‘hemp-lime’.

This kind of aggregate is a co-product of hemp industry that is renewable and produced in an annual cycle while the price of mineral aggregates is steadily increasing as resources become less readily available. The characterisation of these aggregates, however, which is cru-
cial to a proper understanding of the quality of the materials in which they are incorporated, requires adaptations to be made to the techniques usually employed for mineral aggregates, or the devising of new characterisation procedures.

The first round robin test of the Rilem TC-BBM was carried out to compare the protocols in use by the different labs. The aim was to define a test method to measure bulk density, particle size distribution, water absorption and thermal conductivity of bio aggregates. This first round robin test was carried out with one variety of hemp shiv (the woody core of the plant stalk chopped into lengths of a few centimeters) coming from the same production of a processing factory located in France. Seven labs conducted the measurements (Table 2). This paper presents the results on thermal conductivity.

Table 2. Description of the interlaboratory test

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participating Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity</td>
<td>B,C,D,F,G</td>
</tr>
</tbody>
</table>

10 MATERIAL

One variety of hemp shiv was selected for this inter-laboratory test. It comes from the same processing factory where the bast fibers are stripped off (de-cortification), leaving the shiv behind. This shiv was provided by LCDA producer under the commercial name “KANABAT” (Tables 3 and 4). This shiv is in line with the French national recommendation provided by “Construire en Chanvre” association (Table 5) [1].

Table 3. Physical properties of shiv as supplied by the producer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>100 to 110 kg/m³ (depending on ambient relative humidity) Loosely packed, not compressed</td>
</tr>
<tr>
<td>Water absorption</td>
<td>198% (NFV 19002)</td>
</tr>
<tr>
<td>Water absorption of mineral elements</td>
<td>24 meq per 100g of raw material</td>
</tr>
<tr>
<td>Calorific value</td>
<td>3804 cal/g (NF M 07-030 12/9G)</td>
</tr>
<tr>
<td>Thermal Conductivity (10ºC in a dry state)</td>
<td>0.0486 W/m.K (NF EN12667)</td>
</tr>
</tbody>
</table>

Table 4. Chemical composition of the shiv as supplied by the producer*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>9 to 13 %</td>
</tr>
<tr>
<td>Dry material</td>
<td>85 to 90% of which</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Recommendation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Apparent density of particles in kg/m³</td>
<td>Quoted apparent density +/- 15 %</td>
</tr>
<tr>
<td>Maximal length (L_{max} in %)</td>
<td>Quoted L_{max} +/- 10 %</td>
</tr>
<tr>
<td>Initial moisture content</td>
<td>< 19 %</td>
</tr>
<tr>
<td>Dust content</td>
<td>< 2% passing a 0.25 mm sieve</td>
</tr>
<tr>
<td>Colour</td>
<td>% of particles not conforming < 5%</td>
</tr>
</tbody>
</table>

11 THERMAL CONDUCTIVITY

In association with their high porosity, hemp shiv show low thermal conductivity. In addition, this porosity is the location of moisture storage and transfer that impacts on the thermal properties of the material. In this study, two kinds of experimental methods are used to measure the thermal conductivity of hemp shiv. With the guarded hot plate, measurements are held under steady state. If the specimens are wet, this induces a moisture flux that hampers the reliability of thermal conductivity value. With the hot wire, measurements are held under transient state. This does not induce (or does limit) moisture flux, allowing the characterisation of the variation of thermal conductivity against humidity.

11.1 Experimental methods

11.1.1 Guarded hot plate

The guarded hot plate method was used by two labs (See table 6).
The sample is placed between two temperature-controlled plates. One plate is heated while the other plate is cooled. Their temperatures (resp. T_h and T_c) are monitored until they are constant (figure 1). The steady state temperatures, the thickness of the sample (e) and the heat input (q) are used to calculate the thermal conductivity (eq. 9).

$$\lambda = \frac{q.e}{S(T_h - T_c)}$$

eq. 9

<table>
<thead>
<tr>
<th>Table 6: Experimental devices – guarded hot plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab C</td>
</tr>
<tr>
<td>Bench</td>
</tr>
<tr>
<td>Size of the heating unit / of the sample</td>
</tr>
<tr>
<td>Temperatures</td>
</tr>
<tr>
<td>Steady state criteria</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Number of tests</td>
</tr>
<tr>
<td>Sample conditionning</td>
</tr>
<tr>
<td>Hydric state of hemp shiv</td>
</tr>
<tr>
<td>Bulk density of hemp shiv</td>
</tr>
</tbody>
</table>

Figure 1. Hot plate (Lab C)
Figure 2. Hemp shiv placed in a PVC box
11.1.2 Hot wire

The Hot wire method was used by three labs: Lab B (NEOTIM FP2C apparatus), Lab D (home made apparatus) and Lab F (CT Meter apparatus).

The wire is a heating probe and its temperature rise is measured versus heating time t (figure 3 and table 7). There is a proportional relationship between temperature rise ΔT and logarithmic heating time (t) (eq. 10), where q is the heat flux per meter. The thermal conductivity $\lambda [\text{mW.m}^{-1}.\text{K}^{-1}]$ is obtained from the slope of this curve.

$$\Delta T = \frac{q}{4\pi \lambda} (\ln(t) + \text{cste})$$ \hspace{1cm} \text{eq. 10}

![Figure 3. Hot wire: temperature rise versus logarithmic heating time](image)

The main advantage of this method, compared to hot plate method, is that it is a transient method that does not induce (or that does limit) the water migration during test [2][3]. The main disadvantage is that it is a localised measurement. Thus, measurements should be taken several times to ensure the representativeness of the thermal conductivity value.

![Figure 4. Measurement of thermal conductivity of hemp shiv (Lab F)](image)

Table 7: Experimental devices - Hot wires

<table>
<thead>
<tr>
<th></th>
<th>Lab B</th>
<th>Lab D</th>
<th>Lab F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the hot wire</td>
<td>5 cm</td>
<td>5 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>12.8 Ω</td>
<td>5 cm</td>
<td>6.14 Ω</td>
</tr>
<tr>
<td>Power / Duration of measurement</td>
<td>0.1 W / 100 s</td>
<td>0.1W / 120 s, 140s, 160 s, 180 s</td>
<td>0.159 W / 60 s (best setting within 8 tested)</td>
</tr>
<tr>
<td>Number of tests</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Sample conditioning
Probe plunged in the middle of 500g of aggregates which is a consistent volume to approximate infinite volume conditions
Bulk aggregates and compacted hemp shiv (under a compression stress 0.05 MPa)
Controlled thanks to moulds (Figure 4)

| Hydric state of hemp shiv | Undried and dried aggregates (dried in an oven at 60°C for 48h and stored in a hermetic and airtight bag till ambient temperature is reached | Dry state (dried in an oven at 50°C - measurement held at 23°C in a dried chamber), stabilised at 23°C, 50%RH and at 23°C, 80% RH in a climatic chamber |

| Bulk density of hemp shiv | - | 180 kg.m⁻³ for compacted hemp shiv | 105 116 kg.m⁻³ |

11.2 Results
11.2.1 Hot plate
The variation of thermal conductivity against relative humidity and against bulk density for given relative humidity is given figure 5.

The range of bulk density goes from 140 to 200 kg.m⁻³.

For dry state, the average value of thermal conductivity is 54.8 mW.m⁻¹.K⁻¹, and the standard deviation is 2.8 mW.m⁻¹.K⁻¹. For ambient relative humidity of 50%, the average value of thermal conductivity is 62.6 mW.m⁻¹.K⁻¹, the results are more scattered with a standard deviation of 8.9 mW.m⁻¹.K⁻¹. This variation is much higher than the given precision of the measure. This may be due to moisture migration during the measurement. Lastly, for relative humidity of 95%, the average value of thermal conductivity is 75.8 mW.m⁻¹.K⁻¹, and the standard deviation is 2.6 mW.m⁻¹.K⁻¹.
The variation of thermal conductivity of hemp shiv versus bulk density is given figure 6. The range of bulk density goes from 134 to 138 kg.m$^{-3}$. The average value of thermal conductivity at dry state is 55.3 mW.m$^{-1}$.K$^{-1}$, and the standard deviation is 1.7 mW.m$^{-1}$.K$^{-1}$.

![Figure 6. Variation of thermal conductivity versus bulk density - Lab G](image)

11.2.2 Hot wire

The variation of thermal conductivity of hemp shiv versus heating time is given figure 7. The average value of thermal conductivity is 73.5 mW.m$^{-1}$.K$^{-1}$, and the standard deviation is 2.5 mW.m$^{-1}$.K$^{-1}$.

Thermal conductivity for dry state is thus estimated about 66.3 mW.m$^{-1}$.K$^{-1}$ using a self-consistent scheme.

![Figure 7. Thermal conductivity of bulk hemp shiv versus heating time of hot wire – Lab D](image)

The thermal conductivity of compacted hemp shiv is 84 mW.m$^{-1}$.K$^{-1}$.

Unedited Version
The values of thermal conductivity measured on dry and on humid particles of hemp shiv are given figure 8.

For dry particles, the average value of thermal conductivity is 56 mW.m\(^{-1}\).K\(^{-1}\), and the standard deviation is 2 mW.m\(^{-1}\).K\(^{-1}\). While for humid particles, the average value of thermal conductivity is 72 mW.m\(^{-1}\).K\(^{-1}\), and the standard deviation is 3 mW.m\(^{-1}\).K\(^{-1}\). The correlation coefficient is 0.999.

![Figure 8. Thermal conductivity of hemp shiv – Lab B](image)

The variation of thermal conductivity of bulk hemp shiv versus setting of power and heating time is given Table 8. The setting n°3 is considered to be invalid as the temperature rise is less than 10°C. In a similar way, the setting n°5 shows a slightly high temperature rise. For these two settings, the correlation coefficient is lower than the ones obtained with the other settings. The average value of thermal conductivity (without settings 3 and 5) is 79.1 mW.m\(^{-1}\).K\(^{-1}\), and the standard deviation is 4 mW.m\(^{-1}\).K\(^{-1}\).

<table>
<thead>
<tr>
<th>Setting</th>
<th>Power [W]</th>
<th>Heating time [s]</th>
<th>Thermal conductivity [W.m(^{-1}).K(^{-1})]</th>
<th>R(^2)</th>
<th>Temperature rise [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.23</td>
<td>80</td>
<td>0.083</td>
<td>0.9999</td>
<td>19.1</td>
</tr>
<tr>
<td>2</td>
<td>0.159</td>
<td>80</td>
<td>0.0753</td>
<td>0.9993</td>
<td>15.32</td>
</tr>
<tr>
<td>3</td>
<td>0.102</td>
<td>80</td>
<td>0.1067</td>
<td>0.9965</td>
<td>8.15 < 10°C</td>
</tr>
<tr>
<td>4</td>
<td>0.159</td>
<td>60</td>
<td>0.0797</td>
<td>0.9997</td>
<td>12.64</td>
</tr>
<tr>
<td>5</td>
<td>0.23</td>
<td>60</td>
<td>0.0906</td>
<td>0.997</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>0.159</td>
<td>90</td>
<td>0.084</td>
<td>0.9996</td>
<td>13.07</td>
</tr>
<tr>
<td>7</td>
<td>0.159</td>
<td>60</td>
<td>0.0785</td>
<td>0.9999</td>
<td>12.73</td>
</tr>
<tr>
<td>8</td>
<td>0.159</td>
<td>60</td>
<td>0.0745</td>
<td>0.9998</td>
<td>12.8</td>
</tr>
</tbody>
</table>

The setting used for the following measurement is P=0.159W, tc = 60s. The variation of thermal conductivity versus relative humidity and versus bulk density for given relative humidity is shown figure 9.
For dry state, the average value of thermal conductivity is 68 mW.m⁻¹.K⁻¹, and the standard deviation is 2 mW.m⁻¹.K⁻¹. The correlation coefficients are all higher than 0.9996. For ambient relative humidity of 50%, the average value of thermal conductivity is 78 mW.m⁻¹.K⁻¹, and the standard deviation is 1 mW.m⁻¹.K⁻¹. The correlation coefficients are all higher than 0.9998. Lastly, for relative humidity of 80%, the average value of thermal conductivity is 80 mW.m⁻¹.K⁻¹, and the standard deviation is 2 mW.m⁻¹.K⁻¹. The correlation coefficients are all higher than 0.9998 as well.

![Figure 9](image.png)

Figure 9. Variation of thermal conductivity of hemp shiv – left: versus ambient relative humidity – right: versus bulk density for given relative humidity - Lab F

11.2.3 Synthesis

Figure 10 shows a synthesis of the results obtained from all the participant labs (average values with standard deviation bars when available).

The dry state was studied by four labs. The average value is 58 mW.m⁻¹.K⁻¹ with a standard deviation of 6 mW.m⁻¹.K⁻¹. That induces a variation of 11 %. Similar average values are obtained with hot plate and hot wire.

For humid particles, the study was held by four labs. The average value is 74 mW.m⁻¹.K⁻¹ with a standard deviation of 6 mW.m⁻¹.K⁻¹. That induces a variation of 8 %. The measurements held with the hot plate show higher discrepancy than those held with hot wire. This may be due to moisture migration during the test.
Figure 10. Synthesis of results from all participant labs (red : dry state, blue : humid state)

Figure 11 gives the variation of thermal conductivity versus bulk density for given relative humidity and for measurements made with the two methods. This figure shows a cloud of points that remains difficult to analyse. Finally, thermal conductivity is more closely linked to humidity than to bulk density.

11.3 Concluding remarks

Hemp shiv must be stabilised at dry state or at given relative humidity. The drying of hemp shiv is done in an oven at 60°C. The stabilisation (at dry state or given RH) is reached when two successive daily measures of weight agree within 0.1 % of mass of the sample. The stabi-
lisation kinetics should be given. The water content should be calculated from humid and dry mass according to [Eq. 2].

\[
w = \frac{m - m_0}{m_0} \text{ [kg.kg}^{-1}\text{]} \quad \text{eq. 11}
\]

\[m\] : mass of humid particles [kg]
\[m_0\] : mass of dry particles [kg]

For sample conditioning, the optimal method consists in the use of container with known volume to control density during measurement.

For dry state, either hot plate or hot wire can be used to measure thermal conductivity.
For humid state, hot wire is better. The hot plate induces moisture migration altering the repeatability of the measure.

1. Dry the material at 60°C until constant mass is reached (variation lower than 0.1% between two weights at 24 hours).
2. Put hemp shiv in a sealed bag or a sealed bucket until the temperature of the room is reached.

Hot plate method
3. To measure thermal conductivity with hot plate, the minimal thickness is 4.5 cm and the minimal lateral length is twice the thickness.
4. The bulk density must be measured: hemp shiv are placed in a known volume. Hemp shiv are weighed before and after the measurement.
5. The measurement is held once the steady state is assumed to be reached (when the change in conductivity was less than 1% in 60 minutes)
6. The gradient of temperature should be given

Hot wire
3. Hemp shiv are placed in containers to measure bulk density.
4. The power of hot wire should be between 0.1 and 0.2 W. The duration of the measurement should be between 60 and 120 s.

SUMMARY OF FINDINGS

To obtain the principal physical characterisation of plant aggregate as hemp shiv, the literature shows that several protocols are in use. Some of them are directly derived from the methodology to describe the properties of mineral aggregates or other materials. Hemp shiv exhibits some very specific properties in terms of geometry, water absorption, bulk density etc. which are very different from normal mineral aggregates. As a result, the objective of the inter-laboratory tests presented in this paper is to analyse the data obtained from several protocols in order to propose recommendations which are able to reduce the discrepancies resulting from the limitations and lack of adaptation of the protocols to the specificity of hemp shiv.

At this stage five characteristics are investigated. The discussion of the results allows the proposal of the following principal recommendations:
Dry the material at 60°C until constant mass is reached (variation less than 0.1% between two readings over a 24 hour period). Sampling quality is a key point to consider before any determination of properties.

5. Thermal Conductivity: The hot plate and the hot wire methods are both well adapted to measure bulk thermal conductivity. The initial dry state of the sample is a critical parameter in order to obtain valid data.

ACKNOWLEDGEMENTS

References

