

PRE-CONGRESS SPECIALISATION COURSES

COURSE TITLE:

ALKALI ACTIVATED ALUMINOSILICATE BINDERS

COURSE COORDINATORS:

J. Provis (Australia); e-mail: jprovis@unimelb.edu.au A. Fernández-Jiménez (Spain); e-mail: anafj@ietcc.csic.es

CONTENT, TIMETABLE AND LECTURERS:

9:00-9:40	Historical aspects, overview and key applications
	(J. Van Deventer)

History of alkali activation technology Similarities and differences with Portland cement Concrete mix design and engineering properties

9:45-10:25 N-A-S-H gel. Descriptive model and nanostructure (A. Palomo)

Glukhovsky models Timing of N-A-S-H formation - differences between alkali-activated slag and "geopolymer" systems Davidovits' model (similar to zeolite synthesis) Palomo (zeolite precursor) Fernández-Jiménez (N-A-S-H gel, Gel1 and Gel2), etc....

10:30-11:10 [C-S-H], -[C-A-S-H] and [N-A-S-H] gels. Synthesis, structure and compatibility studies (A. Fernández-Jiménez)

11:10-11:30 Coffee break

11:30-12:10 Main factors in alkali-activation processes (I). Chemical and mineralogical composition of aluminosilicates (J. Provis)

Fly ash, metakaolin, clay, clay dehydroxylation, other materials Covalent bonding in aluminosilicates/silicoaluminates Polymerisation: a conceptual model Availability of reactive silica Availability of reactive aluminium Effect of other minority elements: Fe, phosphates, sulfates, etc.

12:15-12:55 Main factors in alkali-activation processes (II). Type and concentration of alkali activator (J. Provis)

Activation solution chemistry Anion ffect: hydroxide, silicate, carbonate and sulfate Cation effect: Na, K, Ca, Li, Cs... Activator concentration and mixing Solid alkali activator Choosing the best activator for different solid precursors

13:00-13:40Main factors in alkali-activation processes (III). Curing
conditions and exposure to high temperature
(P. Krivenko)

Temperature Time Relative humidity In situ strength during exposure to heat Residual strength after exposure to fire Thermal expansion High temperature applications

13:40-15:00 Lunch

15:00-15:40 Techniques to characterize aluminosilicate binder materials (J. Provis)

XRD, FTIR, NMR, SEM, BSEM, TEM Synchrotron radiation and neutron beam-lines

15:45-16:25Durability
(A. Fernández-Jiménez)

Acid attack (HCl, HNO₃, H₂SO₄...) Sulphate attack, sea water attack Carbonation Corrosion Alkali-silica reaction Resistance to water Wet/dry Freeze/thaw

16:30-17:10 Engineering properties and applications (A. Palomo)

Mechanical strength development Matrix-steel bonding properties Examples of application in the precast industry

17:15-18:00Progress in standardisation and commercialisation
(L. Ko and E. Kavalerova)

Standards and regulations Technological opportunities Commercialisation

TOTAL LECTURES: 10 (40 min per lecture)