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warning signs will occur. 
Nowadays, the meaning of structural safety has

widened up and includes the behaviour of the structure
during the eventual collapse and beyond it. A structure
should show enough signs (cracking and deformation)
before the collapse is reached and, in the event of loosing
one or few of its individual members, a progressive
mode of collapse should be prevented.

For this reason and others, the minimum and maxi-
mum limits for project variables (steel ratios, member
dimensions, stress level, etc.) are established in the
design codes. Some of these limits, especially minimum
steel ratios, have to be revised in order to cover members
made of high strength concrete and prestressed members
that are not addressed adequately by current codes.

1. INTRODUCTION

Design codes for reinforced and prestressed concrete
structures have given lately a great deal of emphasis on
the structural behaviour in the Ultimate Limit State
(ULS) and beyond that state in the Post Collapse Limit
State (PCLS). 

In the past, the structural safety was assured only by
the introduction of the partial factors of safety for both
materials and loading, irrespective of the mode of failure
that might occur or the post collapse residual strength. In
fact, the guarantee of surplus resistance is not an overall
guarantee of structural safety, since in the event of over-
loading and lack of member ductility at failure there will
be no force redistribution and a sudden collapse without
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A B S T R A C T

Minimum reinforcement is provided in concrete
beams in order to improve their behaviour towards crack-
ing and ductility at failure. 

Generally, codes of practice equations for the mini-
mum steel ratios, longitudinal and transversal, are mainly
empirical and do not include all the inf luential parameters
in them. For this reason and due to the fact that they do
lack of a theoretical background, different codes can give
values for the minimum steel ratios that greatly differs
from one another. Also the validity of these equations may
be questioned particularly in the case of high strength
concrete beams and prestressed concrete beams for which
limited test data are available.

In this work, a theoretical approach for the minimum
steel ratios that are required for the ductile behaviour at
failure in bending, shear and torsion, in concrete beams
made of concrete with different strengths is presented.
Comparisons are also made between the proposed expres-
sions, the codes expressions and available test results. 
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R É S U M É

Un renforcement minimum des poutres en béton armé est prévu
pour améliorer leur comportement en cas de fissuration et leur ducti-
lité dans la rupture.

En général les formules des normes techniques pour les pourcen-
tages minimum des armatures longitudinales et transversales sont
simplement empiriques et ne contiennent pas tous les paramètres
influents. Pour cette raison et comme elles ne prennent pas en consi-
dération des fondements théoriques, les différents règlements donnent
des valeurs très différentes pour les pourcentages minimum d’acier.
La validité de ces formules peut être mise en doute particulièrement
dans les cas de poutres en béton à haute résistance et des poutres pré-
contraintes pour lesquelles seuls des résultats d’essais très limités sont
disponibles.

Dans cette communication une approche théorique pour les
pourcentages minimum d’acier requis pour le comportement ductile
dans la rupture par flexion, effort tranchant et torsion, des poutres
en béton armé exécutées avec des bétons de différentes résistances est
presentée. Des comparaisons entre les expressions proposées et celles
des règlements sont présentées.
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Generally, minimum steel ratios are provided in rein-
forced concrete elements for one or more reasons: duc-
tility and residual strength at collapse, minimum strength
at ULS, minimum strength at PCLS, crack distribution
and durability.

In this work, a theoretical approach for the minimum
longitudinal and transversal steel ratios in beams sub-
jected to f lexure, shear and torsion, associated only with
the ductility and minimum strength at ULS, is pre-
sented. The ductility through out this work is under-
stood as the capacity of a section, a structure member or
a structure as whole to undergo a reasonable amount of
plastic deformation without significant loss of strength
during its collapse (ULS).

2. MINIMUM FLEXURAL STEEL RATIO IN
FLEXURE

From the previous definition of ductility, the mini-
mum flexural steel reinforcement can be any tensile longi-
tudinal steel ratio that is smaller than the balance steel ratio,
provided that the steel deformation is less than the ultimate
steel deformation (deformation at steel rupture), i.e.:

(1)

with

where α, β are the parameters of the rectangular stress
block (α = 0.85 and β = 0.8 for normal strength concrete).

Equation (1) is valid for any concrete strength pro-
vided that the rectangular stress block parameters (α), (β)
and the ultimate concrete strain (εcu) are adjusted to the
strength used. The CSA A23.3 [6], that covers concrete
with strength up to 80 MPa, for example, propose
α = (0.85 –0.0015fc) ≥ 0.67, β = (0.97-0.0025fc) ≥ 0.67,
and a constant εcu = 3.5‰.

In order to avoid the sudden rupture of the reinforce-
ment when the concrete reaches its ultimate strain εcu,
the maximum steel deformation in the section should be
limited to ultimate strain εsu, 

and, consequently:

(2)

Then, the f lexural minimum steel ratio that provides
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a minimum moment of resistance M and a certain
amount of ductility at failure of a beam should satisfy
both Equations (1) and (2). 

The previous analysis is valid only if the beam is pre-
cracked in f lexure. If, on the other hand, the beam is
uncracked, the following analysis should be considered
taking into consideration the cracking moment Mcr.

In this case, it is important to guarantee that, if the
cracking moment Mcr is reached due to eventual over-
loading, the forces resisted by concrete in tension is
transmitted to tensile longitudinal steel capable of resist-
ing Mcr, i.e.,

(3)

The value of the cracking moment Mcr can be
obtained from the linear elastic stress distribution along
the section and the tensile strength of the concrete
(Fig. 1b). In the case of rectangular cross section without
normal forces (ignoring shrinkage and temperature
effects), the neutral axis depth is x = 0.5 h and, therefore,
the cracking moment can be written as:

(4a)

or, in the non-dimensional form, 

(4b)

Considering the f lexural tensile strength of concrete
as given by the CEB-FIP MC90 [9]:

(5)

the non-dimensional cracking moment (µcr) can be
expressed as a function of fck:
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Fig. 1 – Stress distribution in a rectangular concrete section
under cracking moment.
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(6)

In the case of prestressed beams, Mcr is evaluated tak-
ing into consideration the normal force.

Admitting z ≈ 0.8h and d ≈ 0.85h, from expressions
(3) and (4a) one can get to:

(7a)

or, as a function of fck,

(7b)

On the other hand, if the elasto-plastic tensile stress
distribution is considered in the ULS (Fig. 1c), the collapse
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plastic moment can be evaluated from the plastic tensile
strength of concrete given as fctp = ν.fct, where ν < 1.0 is the
effectiveness factor. The value of this factor is obtained by
equating the areas underneath the stress-strain diagrams for
the actual and idealised elasto-plastic diagrams (see Fig. 2),
for a given relation between the ultimate deformation (εtu )
and the deformation of the concrete (εo) at peak stress (fct ).
Fig. 3 gives the values of (ν) obtained as function of the
ratio (εtu /εo), for a range of variation of this ratio between
1.5 and 2.0 and the stress-strain curves given in Fig. 2.

Considering that the concrete modulus of elasticity is
the same for tension and compression, from the equilib-
rium of the section, the plastic moment at failure is:

with:

Assuming , which corresponds to ν = 2/3, 

one can obtain (see Fig. 3) 
x = 0.424 h
ycg = 0.302 h  (position of the resultant of the tension

forces with respect to neutral axis)
σc = 1.36 fct,, f
Mp = 0.168fct, f

.b .h2

This moment, practically the same as the cracking
moment Mcr given by expression (4a), leads to ρs,min
similar to the one obtained from expression (7b). 

Fig. 4 shows comparisons made between (ρs,min fy) as
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Fig. 2 – Assumed actual and plastic stress–strain curves for con-
crete under uniaxial tension.

Fig. 3 – Variation of the effectiveness factor with the relationship
between the maximum deformation and the deformation at peak
stress for concrete in tension.

Fig. 4 – Comparison between Equation (7b) and the proposals of
some codes for the longitudinal minimum steel in concrete
beams (∗ for h >= 500 mm).
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given by expression (7b), for h varying between 200 mm
and 1000 mm, and by the proposals of five codes of prac-
tice [1, 3, 6, 9 and 10]. To obtain the values of (ρs,min fy) for
CEB-FIP MC/90 [9] in Fig. 4, fy = 500 MPa was used. It
can be seen from this figure that expression (7b) leads to
values of (ρs,min fy) less than those suggested by the codes,
except for the CEB-FIP MC-90, and the proposed values
for the minimum steel ratios given by these codes are
greatly different from one another.

Fig. 5 shows a comparison between expression (7b)
and the results of the beams tested by Bosco et al. [4 and
5], with height (h) varying between 100 mm and 800 mm
and yielding moments (My) close to the cracking
moments. In Fig. 6 Equation (7b) is also compared with
Equation (2). Two values of the ratio (εsu /εcu ) were used
in Equation (2), 20 and 30, in order to represent two lev-
els of steel ductility, medium and high. The adopted val-
ues of (α) and (β) were as proposed by the CSA 23.3 [6]. 

From Figs. 5 and 6 it can be concluded that expres-
sion (7b) can be used to determine the minimum longi-
tudinal steel ratio for beams reinforced with high ductil-
ity steel (εsu /εcu = 30). In the case of beams reinforced
with medium and low ductility steel Equation (2)
becomes dominant and should be used to def ine the
minimum reinforcement. It is worth noting that the val-
ues of (ρs,min fy) given by Equation (2) with (εsu /εcu = 20)
lie in between those given by the ACI 318-99 [1] and the
NS-3474E92 [10] shown in Fig. 4.

The inf luence of the beam height h and the concrete
strength fc on the cracking moment and on the mini-
mum steel ratio to insure ductile behaviour of beams at
failure have been investigated experimentally [4, 5] and
analytically [11], but there are divergences between the
obtained results. The analysis of the results of Bosco et al.
[4 and 5] made by Queiróz [12] have indicated that the
inf luence of h on the non-dimensional cracking
moment (Mcr /bh2fct ) is restricted to a small range of vari-
ation of (h). For practical values of h (h > ≈ 300 mm) this
inf luence can be ignored when compared to that of fc. 

The expression for ρs,min based on the fracture
mechanics approach suggested by Bosco et al. [4 and 5],
indicates a decrease in the minimum steel ratio as the
beam height h increases, in the proportion of (h-0,5).
According to Ožbolt and Bruckner [11] this only hap-
pens up to a certain value of h if the beams are not pro-
vided with distributed reinforcement along their heights.
In addition to that, in high beams without distributed
steel, higher minimum steel ratios are required in order
to avoid the sudden loss of resistance at ultimate load.
Ruiz et al. [14], on the other hand, concluded that,
besides the beam height and the concrete strength, the
minimum f lexural steel ratio depends also on the steel
type and the concrete cover, which in part substantiate
Equation (2).

3. MINIMUM SHEAR STEEL RATIO 

3.1 Analysis based on the diagonal cracking
load

Considering a concrete beam with rectangular cross
section subjected to shear and moment, from the elastic
shear stress distr ibution (second degree parabola,
Fig. 7b), the shear crack appears when τmax = fct, and the
associated shear force is calculated as:

(8)

When an axial force is applied to the beam, resulting
in an average normal stress equal to σcp (positive when
compressive), the maximum shear stress that causes the
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Fig. 5 – Comparison between Equation (7b) and available test
results [4, 5].

Fig. 7 – Shear stress distribution in a rectangular concrete
cross–section at the instant of diagonal crack formation.

Fig. 6 – Comparison between Equation (2) (εsu/εsu = 20 and 30)
and Equation (7b) (h = 200 mm and 1000 mm).



7

f irst diagonal shear crack, according to the modif ied
Mohr-Coulomb criteria, is:

(9)

and the associated shear force is:

(10)

Given that, in both cases, when the shear force Vcr is
reached, a sudden rupture of the beam will occur with a
total loss of strength, it is important that the beam con-
tains a minimum shear reinforcement to provide it with
certain ductility at failure. Considering the failure plane
to be inclined at an angle θu to the beam axis and the
stirrups at right angle to the beam axis, from the equilib-
rium of forces in the vertical direction along a projected
length of the failure plane (h cot θu), the minimum shear
reinforcement is:

(11)

or:

(12)

The angle of the failure plane (θu) normally varies
between 20° and 45°, tending to the smaller value for the
minimum transversal steel ratio. Considering, then, that
θu = 20°, 

(13)

In the case of prestressed beams with inclined cables,
the minimum transversal steel ratio can be reduced by
deducting the vertical component of the prestressing
force (Vp), so as:

and, therefore,

(14)

If the plastic shear stress distribution (uniform, Fig. 7c)
is used, instead of the elastic distribution, and the plastic
tensile strength of the concrete is taken as fctp = ν.fct, with
ν = 2/3, the following expression for ρsw,min can be found.

(15)

Expression (15) gives the same values for ρsw,min as
Equation (12) when the normal stress σcp = 0, and
slightly different values when σcp > 0. 

This analysis is valid only for beams where the diago-
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nal crack occurs in a region with no f lexural cracks, for
example in the case of fully prestressed beams. In beams
with a rectangular cross section and without shear rein-
forcement and normal forces, test results have shown
that the diagonal crack in a pre-cracked beam in f lexure
starts from or joins an existing f lexural one, and at a
shear force lesser than the one given by expression (8).
The analysis of pre-cracked beams in f lexure is dealt
with in a later section.

3.2 Analysis based on the truss model  

From the truss analogy, the stress field in the web of
an uncracked concrete beam subject to f lexure and shear
can be considered as two orthogonal (principal stress
state) uniform stress fields, one in tension and the other
in compression. Considering θ and α the angles of incli-
nation of the compression and tension fields (comple-
mentary angles), respectively, the stress in the tension
field can be obtained from the truss equilibrium at the
diagonal crack formation as

(16)

From expressions (11) and (16) the cracking shear
force can be found:

(17)
Making ν = 2/3 and z ≈ 0,8h in Equation (17), the

minimum transversal steel ratio becomes

(18)

Note that Equation (18), differently from Equations
(13) and (15), does not take into account the influence of
the normal force at the section. This occurs because in the
truss analysis the top and bottom cords resist the normal
forces and the stress fields of the web remains unaltered.

3.3 Minimum shear steel ratio in beams
cracked in flexure

The diagonal crack formation process is very complex,
and depends on the development of the f lexural cracks in
length and width and on the dowel effect of the f lexural
steel. Earlier studies have shown that the section dimen-
sions b and d, the concrete strength and the longitudinal
steel ratio inf luence the cracking shear force. Analyses
made by Castro [8] and Queiróz [12], among others, have
shown that the non-dimensional nominal cracking shear
stress (Vcr /bdfct ) decreases with the increase of fc and d and
increases with the increase of ρ. It was concluded also
that, for beams with practical heights (h >= 300 mm), the
inf luence of the effective depth of the beam d is not signif-
icant and, according to Regan [13], the scale effect tends
to vanish in beams with some shear reinforcement.

Queiróz [12] has also shown that, in beams without

ρsw
ct

yw

f
f,min ,= ⋅0 5

 V f A f f b hcr ct sw yw sw yw= ⋅ ⋅ ⋅ ⋅ = ⋅ = ⋅ ⋅ ⋅ ⋅ν θ ρ θb z cot cot,min ,min

 

σ
θ α α θ

νct
cr cr

ct

V V
f=

⋅ ⋅ +
=

⋅ ⋅
=

b z (cot cot )sin2 b z cot

Shehata, Shehata, Garcia



8

Materials and Structures/Matériaux et Constructions, Vol. 36, January-February 2003

shear reinforcement and with small f lexural steel ratios
(cases of beams with minimum reinforcement), the
cracking shear force Vcr is about 40% of the one obtained
from the elastic analysis.

On the basis of the previous discussion, it is here
considered that the minimum shear steel ratio for a beam
with bending cracking can be calculated by either
Equation (13) or (18) multiplied by a reduction factor
equal to 0.4 which counts for the reduction of the crack-
ing load. Considering also that the tensile strength of the
concrete (fct ) is as given by CEB-FIP MC90,

(19)

the minimum shear steel ratio for a beam with bending
cracking can be expressed as:

(20)

or:

(21)

Fig. 8 compares the values of (ρsw,min fyw) given by the
expressions (20) and (21) and by those of the different
codes of practice [1, 3, 6, 9 and 10], which, do not dis-
tinguish between beams with or without normal force.
For the sake of comparison, Equation (20) was plotted
for two values of σcp/fct = σcp/(0.3 fck

0.67): zero (curve indi-
cated with Eq 20-0) and 2 (curve indicated with Eq 20-
2). In this figure, it can be observed that Equation (21) is
identical to the proposals of the new Brazilian code
NBR 6118 and the CEB-FIP MC90, and leads to the
highest values of (ρsw,min fyw). Making σcp/fct = 0 in
Equation (20), in general, leads to the smallest values of
(ρsw,min fyw) among all proposals.

In Fig. 9 a comparison is made between the values of
(ρsw,min fyw) of tested beams from Yoon et al. [15] and
unpublished tests (D.Sc. thesis due for submission at
COPPE/UFRJ) and the values given by Equations (20)
(with σcp/fct = 0) and (21). The tested beams were divided
into two groups according to the value of the relationship
between the yielding shear force and the cracking shear
force (Vy /Vcr): in the range between 1 and 1.22 and in the
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range between 1.22 and 1.47. From this figure it seems
that, at least for beams without normal force, Equation
(20) can be considered to give adequate values of mini-
mum shear steel ratio, but more test results are needed.

4. MINIMUM TORSION STEEL RATIO 

Due to the little contribution of the core of solid
concrete section to torsion resistance, the section core is
normally ignored when beam torsion resistance is calcu-
lated. The beam section is considered as a hollow thin
walled section with effective wall thickness equal to tef, as
shown in Fig. 10. In design codes, tef is taken as one sixth
of the short side length of the section or the relation
between the section area and the section perimeter. 

From the analysis of the hollow thin walls section
beam under circulatory torsion, it can be obtained the
shear stress in the wall under the action of the torsional
moment Mt, so as:

(22)

The formation of the spiralling diagonal torsion crack
occurs when the shear stress in the wall reaches its limit
(τlim = fct p = ν.fct ) and, therefore, the cracking torsion
moment Mt,cr can be estimated from:

(23)M A t ft cr ef ef ct, = ⋅ ⋅ ⋅2 ν

τ =
⋅ ⋅

M
A t

t

ef ef2

Fig. 8 – Comparisons between Equations (20) and (21) and code
equations for the minimum transversal steel values.

Fig. 9 – Comparison between Equations (20) and (21) and avail-
able test results.

Fig. 10 – Truss model for the analysis of concrete beams under
torsion.
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where Aef is the area confined by the centre lines of the
walls of the hollow section.

To guarantee the beam ductility at the instance of
cracking by torsion, the beam should be provided by a
minimum amount of longitudinal and transversal steel
capable of resisting the forces resisted by concrete prior
to cracking. This minimum steel is found by equating
the forces in concrete and steel before and after cracking.

4.1 Minimum longitudinal steel ratio

From the equilibrium of forces in the space truss
(Fig. 10) in the direction of the beam axis, the force in
the longitudinal steel is:

where n is the number of the section walls (n = 4 for rec-
tangular section).

The minimum longitudinal steel ratio is, then,

(24)

where:

4.2 Minimum transversal steel ratio

From the equilibrium of the truss forces in the trans-
verse direction, the force that is transmitted to the stir-
rups at the time of formation of the inclined crack in the
section walls is:

and the minimum transversal steel ratio is:

(25)

4.3 Minimum torsion steel ratios in beams
cracked in flexure

Similarly to the case of minimum shear reinforce-
ment, it is admitted here that the diagonal-cracking load
in torsion for a beam cracked in f lexure is about 40% of
that of the uncracked beam. Adopting the values ν = 2/3
and θ = 20°, from Equations (19), (24) and (25), the
minimum steel ratios in torsion for a beam cracked in
f lexure can be deduced as:
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(26)

(27)

Considering uo = 2h(0,8+0,8b/h), d = 0,9h, and tef/b = 1/6,
h/b = 3 or h/b = 2 and N = 0, these equations are reduced
to, respectively,

(28a)

(28b)

(29)

If, however, it is adopted for tef the relation between the
area and perimeter of the section, i.e. tef = 0.5b(b/h+1), the
previous equations become:

(30a)

(30b)

(31a)

(31b)

These equations show that, depending on the
adopted value of tef, the minimum steel ratios can differ
considerably.

Fig. 11 shows a comparison between the values of
(ρs,min fy) for the minimum longitudinal steel required for
f lexure (expression (7b), h = 500 mm) and half the values
required for torsion, (Equations 28a and 28b with tef = b/6
and h/b = 3 or h/b = 2, respectively) and Equation (30)
(with tef = 0.5b(b/h+1) and h/b equal to 2 or 3). Half the
values for torsion were used in this comparison in order to
represent the longitudinal steel required for one side of the
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Fig. 11 – Comparison between equations for the longitudinal
minimum steel for flexure (7b) and for torsion (28a , 28b and 30).
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section which can be comparable to that for f lexure and
added to it when combined action is present.

The comparison between the values of (ρsw,min fy)
required for shear, given by expression (20), and the val-
ues of (ρs,min fy) required for torsion moment, given by
expressions (29) (tef = b/6), (31a) (with tef = 0.5b(b/h+1)
and h/b = 3) and (31b) (with tef = 0.5b(b/h+1) and h/b = 2),
is shown in Fig. 12. 

5. CONCLUSIONS

It has been shown that the concrete strength, the
steel type, the wall thickness used in torsion analysis and
the normal force are the inf luential parameters that can
greatly affect the minimum steel ratios required for f lex-
ure, shear and torsion. The beam effective depth does
slightly affect the minimum steel ratio but its inf luence
can be neglected. 

There is great difference between the minimum steel
ratios proposed by codes, due to the lack of theoretical
background in them and the lack of enough test data that
cover adequately all the inf luential parameters involved. 

The minimum steel ratios for torsion can greatly differ
from those required for f lexure and shear, and, therefore,
codes of practice recommendations may not be adequate. 

There is need for more test results to cover a wide
range of the inf luential parameters involved, in order to
substantiate proposals for minimum steel ratios, particu-
larly for torsion and combined actions.
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LIST OF SYMBOLS

Ac Area of a concrete section
Aeff Area confined by the centre lines of the walls of

a hollow section 
As Area of longitudinal steel
As,min Minimum area of longitudinal steel
Asw Area of transversal steel
Asw,min Minimum area of transversal steel
Fs,l Force in longitudinal steel
M Bending moment
Mcr Cracking bending moment
Mp Plastic f lexural moment
Mt Torsional moment
N Normal force
Vcr Cracking shear force
Vp Shear force due to the inclination of prestressing

cables 
b Width of a rectangular section
d Effective depth of a rectangular section
h Section height
tef Effective thickness of a thin walled section
x Neutral axis depth
z Lever arm
fc Compressive strength of concrete

Fig. 12 – Comparison between equations for the transversal mini-
mum steel for shear (20) and for  torsion (29, 31a and 31b).
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fck Characteristic compressive strength of concrete
fct Tensile strength of concrete
fct,f Flexural tensile strength of concrete
fy Yield strength of steel
fyw Yield strength of web steel
n Number
α Coefficient
β Coefficient
θu Truss angle
εco Concrete strain at peak stress in compression
εcu Ultimate concrete strain in compression

εsu Ultimate steel strain
εtu Ultimate concrete strain in tension
εo Concrete strain at peak stress in tension
σcp Average  stress in concrete section due to normal

force
τmax Maximum shear stress
µcr Normalized cracking moment (Mcr/fc.b.h2)
ρs,bal Balanced steel ratio
ρs,min Minimum longitudinal steel ratio
ρsw,min Minimum transversal steel ratio
ν Effectiveness factor
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