Detection of transport processes during freeze-thaw deicing salt attack using single-sided NMR

Author(s): C. Milachowski, D. Lowke, C. Gehlen
Paper category: Conference
Book title: 2nd International conference on Microstructural-related Durability of Cementitious Composites
Editor(s): Guang Ye, K. Van Breugel, Wei Sun, Changwen Miao
Print ISBN: 978-2-35158-129-2
e-ISBN: 978-2-35158-123-0
Publisher: RILEM Publications SARL
Pages: 674-682
Total Pages: 8
Language: English

Damage of concrete structures exposed to a combined freeze-thaw deicing salt attack (FTDSA) is one of the major deterioration mechanisms in cold climates. Before damage occurs, concrete structures subjected to freeze-thaw cycles (FTC) in the presence of water or deicing salt solution exhibit fast moisture uptake known as frost suction. There is still need for research in describing and modelling the mechanisms that lead to freeze-thaw induced surface scaling of concrete. Therefore, the moisture transport under FTDSA was investigated using single-sided ¹H NMR.

The technique enables the observation of dynamic transport processes of water inside the sample non-destructively. Furthermore, porosity and pore size distribution of water saturated samples can be determined. The method also provides information on the mobility of water, i.e. water in capillaries or in gel pores.

Water redistribution in pores as well as changes in the pore structure inside the near surface concrete sample under FTDSA were observed with single-sided ¹H NMR. The measurements confirmed the additional saturation of gel pores during thawing previously described by the micro ice lens model. The results are discussed within the context of the mechanisms of freeze-thaw deicing salt attack of concrete and contribute to a deeper understanding of the mechanisms that lead to freeze-thaw deterioration of concrete.

Online publication: 2013
Publication Type: full_text
Public price (Euros): 0.00

>> You must be connected to view the paper. You can register for free if you are not a member