Thermal properties and steel corrosion in lightweight alkali activated mortars

Author(s): L. Carabba (1), G. Masi (1), S. Pirskawetz (2), S. Krüger (2), G. J. G. Gluth (2), M. C.Bignozzi
Paper category: Proceedings
Book title: Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019) New Generation of Construction Materials
Editor(s): Marijana Serdar, Nina Štirmer, John Provis
ISBN: 978-2-35158-217-6,
Vol 1. ISBN: 978-2-35158-223-7
e-ISBN: 978-2-35158-218-3
Publisher: RILEM Publications SARL
Publication year: 2019
Pages: 149-156
Total Pages: 8
Language : English

Abstract: This study aims at investigating the use of coal fly ash-based alkali activated mortars as passive fire protection system for steel structures. These systems are used to slow down the temperature rise of the steel substrate in case of fire. In addition, the protective system should guarantee the ability to prevent and/or mitigate steel corrosion phenomena. The behavior of a light-weight mortar was compared to that of a normal-weight mortar. Density and porosity were measured to better characterize the physical properties of the mortars. The degree of protection in case of fire was assessed by performing medium-scale fire tests. Acoustic emission measurements were conducted to analyze cracking phenomena during the high temperature exposure. The corrosion process was evaluated using an electrochemical approach in order to monitor the durability of the developed material. Preliminary results show that a 20 mm- thick layer of light-weight mortar is able to protect the steel substrate from reaching the critical temperature of 500 °C for 38 minutes in case of cellulosic fire. In addition, alkali activated mortars provide protection for carbon steel in presence of aggressive environment (i.e. presence of chlorides). The corrosion resistance is strictly related to the physical properties of the developed mortars.

Online publication : 2019
Publication type : full_text
Public price (Euros) : 0.00

>> You must be connected to view the paper. You can register for free if you are not a member