Sign up for our Newsletter

Publications

Pro099

Efficiency of high performance concrete types incorporating bio-materials like rice husk ashes, cassava starch, lignosulfonate, and sisal fibres



Author(s): W.Schmidt, N.S.Msinjili, S.Pirskawetz, H-C.Kühne
Paper category: Proceedings
Book title: Proceedings of the 1st International Conference on Bio-based Building Materials
Editor(s): Sofiane Amziane and Mohammed Sonebi
e-ISBN: 978-2-35158-154-4
Publisher: RILEM Publications SARL
Publication year: 2015
Pages: 208-214
Total Pages: 7
Language : English


Abstract: Over the last decades concrete has evolved from a simple mass construction material towards a sophisticated multi-component system. The design parameters for the mixture composition of concrete have significantly increased from strength based towards overall or specific performance based. As a result the variety of concrete has increased yielding a number of special concrete technologies such as Self-Compacting Concrete (SCC), High-Performance Concrete (HPC), Strain Hardening Cement Based Composites (SHCC), and many others. Due to their complex mixture compositions and a multitude of possible interactions between constituents, these concrete types are preferably composed of special components like well-defined powders and sophisticated chemical admixtures. This makes such concrete technology expensive and limits their application to regions with the required material supply chains. The paper puts focus on materials, which are less well studied in conjunction with high performance concrete, but which are available in many developing countries, and in particular sub-Saharan Africa. The paper shows how SCC can be designed without polycarboxylate ether superplasticizer and well defined fillers, but with lignosulphonate, cassava starch and rice husk ash. The positive effect of well processed rice husk ashes is demonstrated. Furthermore results are presented of SHCC where typical components like polyvinyl alcohol fibres and fluy ash are replaced by sisal fibres and limestone filler, respectively. The results point out that high performance concrete applications do not have to be limited to a boundary framework with availability of well-defined raw material supply structures and sophisticated admixtures or fibres. Concepts are presented how innovative concrete technologies can be developed based on indigenous materials.


Online publication : 2015
Publication type : full_text
Public price (Euros) : 0.00


>> You must be connected to view the paper. You can register for free if you are not a member