Chemo-poro-mechanical modeling of cementitious materials (diffusion-precipitation- cracking)

Author(s): Adrien Socié, Frédéric Perales, Frédéric Dubois, Yann Monerie
Paper category: Proceedings
Book title: Proceedings of the International Conference on Sustainable Materials Systems and Structures (SMSS2019) Durability, Monitoring and Repair of Structures
Editor(s): Ana Baričević, Marija Jelčić Rukavina, Domagoj Damjanović, Maurizio Guadagnini
ISBN: 978-2-35158-217-6
e-ISBN: 978-2-35158-218-3
Publisher: RILEM Publications SARL
Publication year: 2019
Pages: 23-30
Total Pages: 813
Language: English

Abstract: The present work focuses on the impact of the chemical degradations of cementitious materials such as Delayed Ettringite Formation (DEF) on the overall material properties. DEF is an endogenous pathology due to the crystallization of ettringite within voids and cracks. The crystallization pressure in the porous cement paste induces swelling and cracking by differential expansion. The study aims to characterize the evolution of effective material properties (diffusion coefficient, apparent tenacity) with respect to DEF. A non-linear chemo-mechanical modeling is proposed where the entire diffusion-precipitation-pressurization-crack process is solved in a staggered approach. The diffusion-precipitation mechanism is translated by a rough chemical model. The resulting local volume fraction of ettringite is estimated by a finer micro-mechanical-based model using the effective elastic properties of the cement paste. The crack initiation and propagation is estimated with a dedicated cohesive zone model including pressure effect. Some applications of the model are presented.

Online publication :2019
Publication type : full_text
Public price (Euros) : 00

>> You must be connected to view the paper. You can register for free if you are not a member