Design of fire resistant concrete structures, using validated Fem models

Title: Design of fire resistant concrete structures, using validated Fem models
Author(s): S.J.F. Erich, A.B.M. v. Overbeek, G.H.A. v.d. Heijden, L. Pel, H.P. Huinink, A.H.J.M. Vervuurt
Paper category : conference
Book title: International RILEM Symposium on Concrete Modelling - ConMod '08
Editor(s): E. Schlangen and G. De Schutter
Print-ISBN: 978-2-35158-060-8
e-ISBN: 978-2-35158-076-9
Publisher: RILEM Publications SARL
Publication year: 2008
Pages: 103 - 110
Total Pages: 8
Nb references: 30
Language: English

Abstract: Fire safety of buildings and structures is an important issue, and has a great impact on human life and economy. One of the processes negatively affecting the strength of a concrete building or structure during fire is spalling. Many examples exists in which spalling of concrete during fire has caused sever damage to structures, such as in the Mont Blanc and Channel Tunnel. Especially newly developed dense types of concrete such as HPC and SCC, have shown to be sensitive to spalling, hampering the application of these new concrete types.
To reduce risks and building costs, the processes behind spalling need to be understood.
Increasing our knowledge allows us to predict the behaviour reliably and take effective and cost friendly preventive measures. Moisture present in concrete is one of the reasons for spalling. When concrete is heated water will evaporate, which results in a high gas pressure inside the pores of concrete. This high gas pressure can induce spalling. To attain a better understanding of this process, a first step was taken to develop a finite element model (FEM) describing this transport of moisture in heated concrete. However, the validity of all current models (including our own) is unknown because of debatable input parameters and lack of experimental techniques to follow the transport process in situ. In cooperation with the Eindhoven University of Technology moisture transport in heated concrete can now be investigated with a home built dedicated 1D Magnetic Resonance Imaging (MRI) setup.
Using the results of the MRI experiments the validity of our FEM models is being assessed.

Online publication: 2009-06-15
Publication type : full_text
Public price (Euros): 0.00

>> You must be connected to view the paper. You can register for free if you are not a member